dc.contributorCortés Montañez, María Teresa
dc.contributorCortés Montañez, María Teresa
dc.contributorReiber, Andreas
dc.contributorPortilla Salinas, Jaime Antonio
dc.contributorRivas Hernández, Ricardo Eusebio
dc.contributorLaboratorio de electroquímica y materiales poliméricos.
dc.creatorMartínez Guarín, Felipe
dc.date.accessioned2024-02-06T21:42:40Z
dc.date.accessioned2023-09-06T23:35:08Z
dc.date.available2024-02-06T21:42:40Z
dc.date.available2023-09-06T23:35:08Z
dc.date.created2024-02-06T21:42:40Z
dc.date.issued2022-12-22
dc.identifierhttp://hdl.handle.net/1992/64259
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726650
dc.description.abstractEn este trabajo se estudió por primera vez la síntesis de películas de polipirrol (PPy) dopadas con 5,10,15,20-tetrakis(4-carboxifenil) porfirina (TCPP). Esto se realizó mediante una técnica electroquímica galvanostática, variando el pH de la solución y la corriente aplicada para evaluar su efecto en el crecimiento del polímero y su desempeño fotoelectroquímico. Se constató la obtención del material PPy-TCPP mediante espectroscopia de absorción UV-Vis. Luego se caracterizó el comportamiento de las películas como fotocátodos para la reducción de O2 en una celda fotoelectroquímica, No obstante, se considera que probablemente el nuevo polímero cataliza en su lugar, la reacción de reducción del H+ a H2(g).
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherQuímica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relation(1) Ballif, C. Introduction. In Solar Cells and Modules; Shah, A., Ed.; Springer Series in Materials Science; Springer International Publishing: Cham, 2020; pp 1-15. https://doi.org/10.1007/978-3-030-46487-5_1.
dc.relation(2) Gong, J.; Li, C.; Wasielewski, M. R. Advances in Solar Energy Conversion. Chem. Soc. Rev. 2019, 48 (7), 1862-1864. https://doi.org/10.1039/C9CS90020A.
dc.relation(3) Bastos-Neto, M.; Patzschke, C.; Lange, M.; Möllmer, J.; Möller, A.; Fichtner, S.; Schrage, C.; Lässig, D.; Lincke, J.; Staudt, R.; Krautscheid, H.; Gläser, R. Assessment of Hydrogen Storage by Physisorption in Porous Materials. Energy Environ. Sci. 2012, 5 (8), 8294-8303. https://doi.org/10.1039/C2EE22037G.
dc.relation(4) Hydrogen Peroxide Production from Solar Water Oxidation | ACS Energy Letters. https://pubs-acs-org.ezproxy.uniandes.edu.co/doi/10.1021/acsenergylett.9b02199 (accessed 2022-09-17).
dc.relation(5) Disselkamp, R. S. Energy Storage Using Aqueous Hydrogen Peroxide. Energy Fuels 2008, 22 (4), 2771-2774. https://doi.org/10.1021/ef800050t.
dc.relation(6) Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process - Campos-Martin - 2006 - Angewandte Chemie International Edition - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200503779 (accessed 2022-09-17).
dc.relation(7) Electrochemical Photolysis of Water at a Semiconductor Electrode | Nature. https://www.nature.com/articles/238037a0 (accessed 2022-09-17).
dc.relation(8) Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y. H. Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Adv. Mater. 2020, 32 (18), 1904717. https://doi.org/10.1002/adma.201904717.
dc.relation(9) Photoelectrochemistry. In Semiconductor Photocatalysis; John Wiley & Sons, Ltd, 2014; pp 55-84. https://doi.org/10.1002/9783527673315.ch4.
dc.relation(10) Seo, D.-K.; Hoffmann, R. Direct and Indirect Band Gap Types in One-Dimensional Conjugated or Stacked Organic Materials. Theor. Chem. Acc. 1999, 102 (1), 23-32. https://doi.org/10.1007/s002140050469.
dc.relation(11) Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical Devices for Solar Water Splitting - Materials and Challenges. Chem. Soc. Rev. 2017, 46 (15), 4645-4660. https://doi.org/10.1039/C6CS00306K.
dc.relation(12) Bessegato, G. G.; Guaraldo, T. T.; de Brito, J. F.; Brugnera, M. F.; Zanoni, M. V. B. Achievements and Trends in Photoelectrocatalysis: From Environmental to Energy Applications. Electrocatalysis 2015, 6 (5), 415-441. https://doi.org/10.1007/s12678-015- 0259-9.
dc.relation(13) Zhang, Z.; Yates, J. T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112 (10), 5520-5551. https://doi.org/10.1021/cr3000626.
dc.relation(14) From Molecules to Materials; Rozhkova, E. A., Ariga, K., Eds.; Springer International Publishing: Cham, 2015. https://doi.org/10.1007/978-3-319-13800-8.
dc.relation(15) Qian, W.; Xu, S.; Zhang, X.; Li, C.; Yang, W.; Bowen, C. R.; Yang, Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Lett. 2021, 13 (1), 156. https://doi.org/10.1007/s40820-021-00681-9.
dc.relation(16) Kalanur, S.; Duy, L. T.; Seo, H. Recent Progress in Photoelectrochemical Water Splitting Activity of WO3 Photoanodes. Top. Catal. 2018, 61. https://doi.org/10.1007/s11244-018-0950-1.
dc.relation(17) Jang, Y. J.; Lee, J. S. Photoelectrochemical Water Splitting with P-Type Metal Oxide Semiconductor Photocathodes. ChemSusChem 2019, 12 (9), 1835-1845. https://doi.org/10.1002/cssc.201802596.
dc.relation(18) K, N.; Sekhar Rout, C. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11 (10), 5659-5697. https://doi.org/10.1039/D0RA07800J.
dc.relation(19) Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118 (14), 6766-6843. https://doi.org/10.1021/acs.chemrev.6b00275.
dc.relation(20) Swamy, N. K.; S, S.; Santhosh, A. Conductive Polymers and Their Nanohybrid Transducers for Electrochemical Biosensors Applications: A Brief Review. 2018. https://doi.org/10.22607/IJACS.2017.S02002.
dc.relation(21) Camurlu, P. Polypyrrole Derivatives for Electrochromic Applications. RSC Adv. 2014, 4 (99), 55832-55845. https://doi.org/10.1039/C4RA11827H.
dc.relation(22) Milica, G.; Jugovic, B.; Stevanovic, J.; Grgur, B. Electrochemical Synthesis of Electroconducting Polymers. Hem. Ind. 2014, 68, 673-684. https://doi.org/10.2298/HEMIND131122008G.
dc.relation(23) Mahmud, Z. Á.; Gordillo, G.; DAlkaine, C. V. Técnicas de electroanalítica de superficie utilizadas para el cincado en medio ácido. 23.
dc.relation(24) Wheeler, G. P.; Choi, K.-S. Investigation of P-Type Ca2Fe2O5 as a Photocathode for Use in a Water Splitting Photoelectrochemical Cell. ACS Appl. Energy Mater. 2018, 1 (9), 4917-4923. https://doi.org/10.1021/acsaem.8b00934.
dc.relation(25) Sekizawa, K.; Oh-ishi, K.; Morikawa, T. Photoelectrochemical Water-Splitting over a Surface Modified p-Type Cr2O3 Photocathode. Dalton Trans. 2020, 49 (3), 659-666. https://doi.org/10.1039/C9DT04296B.
dc.relation(26) Chen, C.; Yasugi, M.; Yu, L.; Teng, Z.; Ohno, T. Visible Light-Driven H2O2 Synthesis by a Cu3BiS3 Photocathode via a Photoelectrochemical Indirect Two-Electron Oxygen Reduction Reaction. Appl. Catal. B Environ. 2022, 307, 121152. https://doi.org/10.1016/j.apcatb.2022.121152.
dc.relation(27) Sun, J.; Yu, Y.; Curtze, A. E.; Liang, X.; Wu, Y. Dye-Sensitized Photocathodes for Oxygen Reduction: Efficient H 2 O 2 Production and Aprotic Redox Reactions. Chem. Sci. 2019, 10 (21), 5519-5527. https://doi.org/10.1039/C9SC01626K.
dc.relation(28) Polypyrrole-Ru(2,2-bipyridine)32+/MoSx Structured Composite Film As a Photocathode for the Hydrogen Evolution Reaction | ACS Applied Materials & Interfaces. https://pubs-acs-org.ezproxy.uniandes.edu.co/doi/10.1021/acsami.5b00401 (accessed 2022- 11-07).
dc.relation(29) Yao, H.; Zhang, F.; Zhang, G.; Luo, H.; Liu, L.; Shen, M.; Yang, Y. A Novel TwoDimensional Coordination Polymer-Polypyrrole Hybrid Material as a High-Performance Electrode for Flexible Supercapacitor. Chem. Eng. J. 2018, 334, 2547-2557. https://doi.org/10.1016/j.cej.2017.12.013.
dc.relation(30) Wang, M.; Zhong, L.; Cui, M.; Liu, W.; Liu, X. Nanomolar Level Acetaminophen Sensor Based on Novel Polypyrrole Hydrogel Derived N-Doped Porous Carbon. Electroanalysis 2019, 31 (4), 711-717. https://doi.org/10.1002/elan.201800721.
dc.relation(31) Peshoria, S.; Narula, A. K. One-Pot Synthesis of Porphyrin@polypyrrole Hybrid and Its Application as an Electrochemical Sensor. Mater. Sci. Eng. B 2018, 229, 53-58. https://doi.org/10.1016/j.mseb.2017.12.023.
dc.relation(32) Puerres, J.; Díaz, M.; Hurtado, J.; Ortiz, P.; Cortés, M. T. Photoelectrochemical Stability under Anodic and Cathodic Conditions of Meso-Tetra-(4-Sulfonatophenyl)- Porphyrinato Cobalt (II) Immobilized in Polypyrrole Thin Films. Polymers 2021, 13 (4), 657. https://doi.org/10.3390/polym13040657.
dc.relation(33) Nakashima, S.; Negishi, R.; Tada, H. Visible-Light-Induced Water Oxidation by a Hybrid Photocatalyst Consisting of Bismuth Vanadate and Copper(II) Meso-Tetra(4- Carboxyphenyl)Porphyrin. Chem. Commun. 2016, 52 (18), 3665-3668. https://doi.org/10.1039/C5CC10014C.
dc.relation(34) Colorimetric Determination of Hydrogen Peroxide | Analytical Chemistry. https://pubs.acs.org/doi/pdf/10.1021/i560117a011 (accessed 2022-10-23).
dc.relation(35) Iurchenkova, A. A.; Kallio, T.; Fedorovskaya, E. O. Relationships between Polypyrrole Synthesis Conditions, Its Morphology and Electronic Structure with Supercapacitor Properties Measured in Electrolytes with Different Ions and PH Values. Electrochimica Acta 2021, 391, 138892. https://doi.org/10.1016/j.electacta.2021.138892.
dc.relation(36) Saidman, S. B. Influence of Anion and PH on the Electrochemical Behaviour of Polypyrrole Synthesised in Alkaline Media. Electrochimica Acta 2003, 48 (12), 1719-1726. https://doi.org/10.1016/S0013-4686(03)00110-5.
dc.relation(37) Mathad, S.; Puri, V.; Patil, N.; Jadhav, R. Response of Ag Thick Film Microstripline to Perturbation of Bulk Lead Free Ferroelectric Ceramics; 2013; Vol. 2013, p 3.27-3.27. https://doi.org/10.1049/cp.2013.2546.
dc.relation(38) Puerres Puerres, J. D. Recubrimientos basados en polipirrol para la producción fotocatalítica de hidrógeno a partir de agua. 2021.
dc.relation(39) Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Peña, O.; Gómez-Camargo, D.; Bohórquez, A. R. R.; Zarate, X.; Schott, E. Photodynamic Effect of 5,10,15,20-Tetrakis(4- Carboxyphenyl)Porphyrin and (Zn2+ and Sn4+) Derivatives against Leishmania Spp in the Promastigote Stage: Experimental and DFT Study. Chem. Pap. 2021, 75 (9), 4817-4829. https://doi.org/10.1007/s11696-021-01702-y.
dc.relation(40) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner's Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95 (2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361.
dc.relation(41) Omnes, F. Introduction to Semiconductor Photodetectors. In Optoelectronic Sensors; John Wiley & Sons, Ltd, 2009; pp 1-14. https://doi.org/10.1002/9780470611630.ch1.
dc.relation(42) Sunarya, R. R.; Hidayat, R.; Radiman, C. L.; Suendo, V. Electrocatalytic Activation of a DSSC Graphite Composite Counter Electrode Using In Situ Polymerization of Aniline in a Water/Ethanol Dispersion of Reduced Graphene Oxide. J. Electron. Mater. 2020, 49 (5), 3182-3190. https://doi.org/10.1007/s11664-020-07977-3.
dc.relation(43) Peres, R. C. D.; Pernaut, J. M.; De Paoli, M.-A. Polypyrrole/Dodecylsulfate: Effects of Different Synthesis Conditions. J. Polym. Sci. Part Polym. Chem. 1991, 29 (2), 225-231. https://doi.org/10.1002/pola.1991.080290210.
dc.relation(44) Makula, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892.
dc.relation(45) Lanuza, C.; Manzano, M.; Manzano, E.; Alcantara, N.; Llanes, A.; Ong, H. L. Optical Band Gap and Electrical Conductivity of Doped Conducting Polypyrrole; 2019; pp 1-4. https://doi.org/10.1109/HNICEM48295.2019.9072769.
dc.relation(46) Chougule, M. Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanosci. Lett. 2011, 01, 6-10. https://doi.org/10.4236/snl.2011.11002.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titlePolipirrol dopado con la 5,10,15,20-tetrakis(4-carboxifenil) porfirina: síntesis electroquímica y catálisis fotoelectroquímica para la reducción de O2
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución