dc.contributor | Barbieri, Giacomo | |
dc.contributor | Arbeláez Escalante, Pablo Andrés | |
dc.creator | Gómez Benavides, Edgar Daniel | |
dc.date.accessioned | 2023-01-31T15:54:47Z | |
dc.date.accessioned | 2023-09-06T23:33:50Z | |
dc.date.available | 2023-01-31T15:54:47Z | |
dc.date.available | 2023-09-06T23:33:50Z | |
dc.date.created | 2023-01-31T15:54:47Z | |
dc.date.issued | 2022-06-29 | |
dc.identifier | http://hdl.handle.net/1992/64391 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726629 | |
dc.description.abstract | In this paper, the potential that IRT may have for classifying the severity of failures of rolling bearings is investigated. Considering the promising results obtained within the Infrared Breast Thermography domain, thermal-based analysis (TBA) using temperature matrices, intensity-based analysis (IBA) using thermal images, and different approaches for combining the two methods are compared in the classification of the severity of outer-race defects of rolling bearings. An accuracy and F1-score of more than 90% were obtained through the concatenation of the temperature matrix to the thermal image through pseudo colors and their processing with the VGG deep learning algorithm. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Mecánica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Mecánica | |
dc.relation | Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip,
J., and Jayakumar, T. (2013). Infrared thermography
for condition monitoring¿a review. Infrared
Physics & Technology, 60, 35-55. | |
dc.relation | Cerrada, M., S´anchez, R.V., Li, C., Pacheco, F.,
Cabrera, D., de Oliveira, J.V., and V´asquez, R.E.
(2018). A review on data-driven fault severity
assessment in rolling bearings. Mechanical Systems
and Signal Processing, 99, 169-196. | |
dc.relation | Choudhary, A., Goyal, D., and Letha, S.S. (2020).
Infrared thermography-based fault diagnosis of induction motor bearings using machine learning.
IEEE Sensors Journal, 21(2), 1727-1734. | |
dc.relation | Choudhary, A., Mian, T., and Fatima, S. (2021).
Convolutional neural network based bearing fault
diagnosis of rotating machine using thermal images.
Measurement, 176, 109196. | |
dc.relation | El-Thalji, I. and Jantunen, E. (2015). A summary of
fault modelling and predictive health monitoring of
rolling element bearings. Mechanical systems and
signal processing, 60, 252-272. | |
dc.relation | Gogoi, U.R., Majumdar, G., Bhowmik, M.K., and
Ghosh, A.K. (2019). Evaluating the efficiency
of infrared breast thermography for early breast
cancer risk prediction in asymptomatic population.
Infrared Physics & Technology, 99, 201-211. | |
dc.relation | Golestani, N., EtehadTavakol, M., and Ng, E. (2014).
Level set method for segmentation of infrared
breast thermograms. EXCLI journal, 13, 241. | |
dc.relation | Hellier, C. (2001). Handbook of nondestructive evaluation. McGraw-Hill Professional. | |
dc.relation | Hu, J., Shen, L., and Sun, G. (2018). Squeezeand-
excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, 7132-7141. | |
dc.relation | Janssens, O., Schulz, R., Slavkovikj, V., Stockman,
K., Loccufier, M., Van de Walle, R., and
Van Hoecke, S. (2015). Thermal image based fault
diagnosis for rotating machinery. Infrared Physics
& Technology, 73, 78-87. | |
dc.relation | Janssens, O., Van de Walle, R., Loccufier, M., and
Van Hoecke, S. (2017). Deep learning for infrared
thermal image based machine health monitoring.
IEEE/ASME Transactions on Mechatronics, 23(1),
151-159. | |
dc.relation | Jardine, A.K., Lin, D., and Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510. | |
dc.relation | Jeffali, F., Ouariach, A., El Kihel, B., and Nougaoui,
A. (2019). Diagnosis of three-phase induction motor
and the impact on the kinematic chain using
non-destructive technique of infrared thermography.
Infrared Physics & Technology, 102, 102970. | |
dc.relation | Jia, Z., Liu, Z., Vong, C.M., and Pecht, M. (2019). A
rotating machinery fault diagnosis method based
on feature learning of thermal images. Ieee Access,
7, 12348-12359. | |
dc.relation | Li, R., Verhagen, W.J., and Curran, R. (2020). A
systematic methodology for Prognostic and Health
Management system architecture definition. Reliability
Engineering and System Safety, 193. | |
dc.relation | Lopez-Perez, D. and Antonino-Daviu, J. (2017). Application of infrared thermography to failure detection in industrial induction motors: case stories.
IEEE Transactions on Industry Applications,
53(3), 1901-1908. | |
dc.relation | Roldan, S., Sanchez-Londono, D., and Barbieri, G.
(2021). Thermographic indicators for the state assessment of rolling bearings. IFAC-PapersOnLine,
54(1), 1218-1223. | |
dc.relation | Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,
and Chen, L.C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and
pattern recognition, 4510-4520. | |
dc.relation | Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. | |
dc.relation | Tan, M. and Le, Q. (2019). Efficientnet: Rethinking
model scaling for convolutional neural networks.
In International conference on machine learning,
6105-6114. PMLR. | |
dc.relation | Wang, L. and Gao, R.X. (2006). Condition monitoring
and control for intelligent manufacturing. Springer Science & Business Media. | |
dc.relation | Yala, A., Lehman, C., Schuster, T., Portnoi, T.,
and Barzilay, R. (2019). A deep learning
mammography-based model for improved breast
cancer risk prediction. Radiology, 292(1), 60-66. | |
dc.relation | Yongbo, L., Xiaoqiang, D., Fangyi, W., Xianzhi, W.,
and Huangchao, Y. (2020). Rotating machinery
fault diagnosis based on convolutional neural network and infrared thermal imaging. Chinese Journal of Aeronautics, 33(2), 427-438. | |
dc.relation | Younus, A.M. and Yang, B.S. (2012). Intelligent
fault diagnosis of rotating machinery using infrared
thermal image. Expert Systems with Applications,
39(2), 2082-2091. | |
dc.relation | Zhang, P., Du, Y., Habetler, T.G., and Lu, B.
(2010). A survey of condition monitoring and
protection methods for medium-voltage induction
motors. IEEE Transactions on Industry Applications,
47(1), 34-46. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Thermal images and temperature matrices for the state assessment of rolling bearings | |
dc.type | Trabajo de grado - Maestría | |