dc.contributorBarbieri, Giacomo
dc.contributorArbeláez Escalante, Pablo Andrés
dc.creatorGómez Benavides, Edgar Daniel
dc.date.accessioned2023-01-31T15:54:47Z
dc.date.accessioned2023-09-06T23:33:50Z
dc.date.available2023-01-31T15:54:47Z
dc.date.available2023-09-06T23:33:50Z
dc.date.created2023-01-31T15:54:47Z
dc.date.issued2022-06-29
dc.identifierhttp://hdl.handle.net/1992/64391
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726629
dc.description.abstractIn this paper, the potential that IRT may have for classifying the severity of failures of rolling bearings is investigated. Considering the promising results obtained within the Infrared Breast Thermography domain, thermal-based analysis (TBA) using temperature matrices, intensity-based analysis (IBA) using thermal images, and different approaches for combining the two methods are compared in the classification of the severity of outer-race defects of rolling bearings. An accuracy and F1-score of more than 90% were obtained through the concatenation of the temperature matrix to the thermal image through pseudo colors and their processing with the VGG deep learning algorithm.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Mecánica
dc.relationBagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J., and Jayakumar, T. (2013). Infrared thermography for condition monitoring¿a review. Infrared Physics & Technology, 60, 35-55.
dc.relationCerrada, M., S´anchez, R.V., Li, C., Pacheco, F., Cabrera, D., de Oliveira, J.V., and V´asquez, R.E. (2018). A review on data-driven fault severity assessment in rolling bearings. Mechanical Systems and Signal Processing, 99, 169-196.
dc.relationChoudhary, A., Goyal, D., and Letha, S.S. (2020). Infrared thermography-based fault diagnosis of induction motor bearings using machine learning. IEEE Sensors Journal, 21(2), 1727-1734.
dc.relationChoudhary, A., Mian, T., and Fatima, S. (2021). Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Measurement, 176, 109196.
dc.relationEl-Thalji, I. and Jantunen, E. (2015). A summary of fault modelling and predictive health monitoring of rolling element bearings. Mechanical systems and signal processing, 60, 252-272.
dc.relationGogoi, U.R., Majumdar, G., Bhowmik, M.K., and Ghosh, A.K. (2019). Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infrared Physics & Technology, 99, 201-211.
dc.relationGolestani, N., EtehadTavakol, M., and Ng, E. (2014). Level set method for segmentation of infrared breast thermograms. EXCLI journal, 13, 241.
dc.relationHellier, C. (2001). Handbook of nondestructive evaluation. McGraw-Hill Professional.
dc.relationHu, J., Shen, L., and Sun, G. (2018). Squeezeand- excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 7132-7141.
dc.relationJanssens, O., Schulz, R., Slavkovikj, V., Stockman, K., Loccufier, M., Van de Walle, R., and Van Hoecke, S. (2015). Thermal image based fault diagnosis for rotating machinery. Infrared Physics & Technology, 73, 78-87.
dc.relationJanssens, O., Van de Walle, R., Loccufier, M., and Van Hoecke, S. (2017). Deep learning for infrared thermal image based machine health monitoring. IEEE/ASME Transactions on Mechatronics, 23(1), 151-159.
dc.relationJardine, A.K., Lin, D., and Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510.
dc.relationJeffali, F., Ouariach, A., El Kihel, B., and Nougaoui, A. (2019). Diagnosis of three-phase induction motor and the impact on the kinematic chain using non-destructive technique of infrared thermography. Infrared Physics & Technology, 102, 102970.
dc.relationJia, Z., Liu, Z., Vong, C.M., and Pecht, M. (2019). A rotating machinery fault diagnosis method based on feature learning of thermal images. Ieee Access, 7, 12348-12359.
dc.relationLi, R., Verhagen, W.J., and Curran, R. (2020). A systematic methodology for Prognostic and Health Management system architecture definition. Reliability Engineering and System Safety, 193.
dc.relationLopez-Perez, D. and Antonino-Daviu, J. (2017). Application of infrared thermography to failure detection in industrial induction motors: case stories. IEEE Transactions on Industry Applications, 53(3), 1901-1908.
dc.relationRoldan, S., Sanchez-Londono, D., and Barbieri, G. (2021). Thermographic indicators for the state assessment of rolling bearings. IFAC-PapersOnLine, 54(1), 1218-1223.
dc.relationSandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4510-4520.
dc.relationSimonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
dc.relationTan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, 6105-6114. PMLR.
dc.relationWang, L. and Gao, R.X. (2006). Condition monitoring and control for intelligent manufacturing. Springer Science & Business Media.
dc.relationYala, A., Lehman, C., Schuster, T., Portnoi, T., and Barzilay, R. (2019). A deep learning mammography-based model for improved breast cancer risk prediction. Radiology, 292(1), 60-66.
dc.relationYongbo, L., Xiaoqiang, D., Fangyi, W., Xianzhi, W., and Huangchao, Y. (2020). Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging. Chinese Journal of Aeronautics, 33(2), 427-438.
dc.relationYounus, A.M. and Yang, B.S. (2012). Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Systems with Applications, 39(2), 2082-2091.
dc.relationZhang, P., Du, Y., Habetler, T.G., and Lu, B. (2010). A survey of condition monitoring and protection methods for medium-voltage induction motors. IEEE Transactions on Industry Applications, 47(1), 34-46.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleThermal images and temperature matrices for the state assessment of rolling bearings
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución