dc.contributorAlvarez Martínez, David
dc.contributorTorres Cadena, Gonzalo
dc.contributorGómez Castro, Camilo Hernando
dc.contributorEscobar Velásquez, John Wilmer
dc.contributorFacultad de Ingeniería
dc.creatorCuéllar Sabogal, Juan Diego
dc.date.accessioned2023-06-06T13:35:16Z
dc.date.accessioned2023-09-06T23:31:40Z
dc.date.available2023-06-06T13:35:16Z
dc.date.available2023-09-06T23:31:40Z
dc.date.created2023-06-06T13:35:16Z
dc.date.issued2023-05-19
dc.identifierhttp://hdl.handle.net/1992/67210
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726588
dc.description.abstractEn el marco de la mejora de la operación del área de Mercadeo de un Banco, se generó un sistema de apoyo a la decisión (DSS) para la asignación y gestión de campañas. Esta asignación puede verse como un problema de asignación de tareas del tipo Qm//[sumatoria]QjWj. Para resolver este Scheduling, el DSS propuesto integró un algoritmo de búsqueda local iterada (ILS). Se evaluó la efectividad de la metaheurística comparando contra el desempeño de un software comercial de optimización lineal. Los resultados arrojan un gran desempeño en términos de tiempo computacional y cercanía al valor óptimo para el ILS. Por último, se implementó el DSS mediante los aplicativos que incluye la suite empresarial del Banco dando resultados positivos para los usuarios de este. Como trabajo adicional se propone evaluar el sistema de asignación de tareas mediante la ejecución de tareas en paralelo para poder representar mejor un esquema operativo constituido por personas.
dc.description.abstractAt Marketing Area's Bank, a Decision Support System (DSS) was developed to improve the scheduling and management of digital campaigns. This Schedule can be seen as Qm//[sumatoria]QjWj problem. To solve this, the proposed DSS included an Iterated Local Search (ILS) algorithm. The effectiveness of this metaheuristic was evaluated by comparing against a commercial linear optimization software performance. The ILS result shows a good performance in terms of computational time and gap between the optimal value obtained with the commercial software. Finally, the DSS was created using the Bank's business suite, showing positive results for their final users. As additional work, it is proposed to evaluate the Scheduling problem with parallel execution of jobs in order to simulate a better real situation of the campaign process generation.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Industrial
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Industrial
dc.relationPinedo, M. L. (2016). Scheduling: Theory, Algo-rithms, and Systems. New York: Springer.
dc.relationRamly, N. N., Nor, F. M., Ahmad, N. H., & Aziz, M. H. (2012). Comparative analysis on data visualiza-tion for operations dashboard. International Journal of Information and Education Technology, 2(4), 287-290
dc.relationSubramanian, A. (2012). Heuristic, exact and hybrid approaches for vehicle routing pro-blems. Universidade Federal Fluminense, Niteroi, Sao Pablo, 60-69.
dc.relationChen, K., Cheng, T. C. E., Huang, H., Ji, M., & Yao, D. (2023). Single-machine Scheduling with Au-tonomous and Induced Learning to Minimize Total Weighted Number of Tardy Jobs. European Journal of Operational Research.
dc.relationChen, R., He, R., & Yuan, J. (2022). Preemptive scheduling to minimize total weighted late work and weighted number of tardy jobs. Computers & Indus-trial Engineering, 167, 107969.
dc.relationMor, B., Mosheiov, G., & Shapira, D. (2020). Lot scheduling on a single machine to minimize the (weighted) number of tardy orders. Information Pro-cessing Letters, 164, 106009.
dc.relationYin, Y., Wu, C. C., Wu, W. H., & Cheng, S. R. (2012). The single-machine total weighted tardiness scheduling problem with position-based learning ef-fects. Computers & Operations Research, 39(5), 1109-1116.
dc.relationSourd, F., & Kedad-Sidhoum, S. (2008). A faster branch-and-bound algorithm for the earliness-tardiness scheduling problem. Journal of Schedu-ling, 11, 49-58.
dc.relationGonçalves, T. C., Valente, J. M., & Schaller, J. E. (2016). Metaheuristics for the single machine weigh-ted quadratic tardiness scheduling pro-blem. Computers & Operations Research, 70, 115-126.
dc.relationHaddad, H. (2014). Minimizing total weighted tar-diness and earliness on a single machine production scheduling problem with multi-task maintenance poli-cy and deteriorating jobs. Arabian Journal for Science and Engineering, 39(8), 6543-6553.
dc.relationKanet, J. J., & Li, X. (2004). A weighted modified due date rule for sequencing to minimize weighted tardiness. Journal of Scheduling, 7, 261-276.
dc.relationMensendiek, A., Gupta, J. N., & Herrmann, J. (2015). Scheduling identical parallel machines with fixed delivery dates to minimize total tardi-ness. European Journal of Operational Re-search, 243(2), 514-522.
dc.relationDella Croce, F., Garaix, T., & Grosso, A. (2012). Iterated local search and very large neighborhoods for the parallel-machines total tardiness pro-blem. Computers & Operations Research, 39(6), 1213-1217.
dc.relationRaghavan, N. S., & Venkataramana, M. (2009). Parallel processor scheduling for minimizing total weighted tardiness using ant colony optimization. The International Journal of Advanced Manufacturing Te-chnology, 41, 986-996.
dc.relationJouglet, A., & Savourey, D. (2011). Dominance ru-les for the parallel machine total weighted tardiness scheduling problem with release dates. Computers & Operations Research, 38(9), 1259-1266.
dc.relationZhang, Z., Zheng, L., & Weng, M. X. (2007). Dy-namic parallel machine scheduling with mean weigh-ted tardiness objective by Q-Learning. The Internatio-nal Journal of Advanced Manufacturing Techno-logy, 34, 968-980.
dc.relationAr'k, O. A., Schutten, M., & Topan, E. (2022). Weighted earliness/tardiness parallel machine schedu-ling problem with a common due date. Expert systems with applications, 187, 115916.
dc.relationWang, X., Li, Z., Chen, Q., & Mao, N. (2020). Me-ta-heuristics for unrelated parallel machines schedu-ling with random rework to minimize expected total weighted tardiness. Computers & Industrial Engi-neering, 145, 106505.
dc.relationJos, B. C., Kavith, A. V., Padmakumar, N., Kurian, M. (2023). A sustainable production scheduling mo-del for parallel manufacturing units with multiple speed levels. Materials Today: Proceedings, 2214-7853.
dc.relationMaecker, S., Shen, L., & Mönch, L. (2023). Unre-lated parallel machine scheduling with eligibility cons-traints and delivery times to minimize total weighted tardiness. Computers & Operations Research, 149, 105999.
dc.relationAr'k, O. A. (2020). Comparisons of metaheuristic algorithms for unrelated parallel machine weighted earliness/tardiness scheduling problems. Evolutionary Intelligence, 13(3), 415-425.
dc.relationFang, K. T., & Lin, B. M. (2013). Parallel-machine scheduling to minimize tardiness penalty and power cost. Computers & Industrial Engineering, 64(1), 224-234.
dc.relationDiana, R. O. M., & de Souza, S. R. (2020). Analysis of variable neighborhood descent as a local search operator for total weighted tardiness problem on unrelated parallel machines. Computers & Opera-tions Research, 117, 104886.
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSistema de apoyo a la decisión para la asignación y gestión de campañas de mercadeo en una entidad financiera
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución