dc.contributorDuitama Castellanos, Jorge Alexander
dc.contributorZabaleta, Jovanny
dc.contributorRivera Escobar, Hernán Mauricio
dc.contributorCruz Jiménez, Juan Carlos
dc.contributorTICSw
dc.creatorStepanian Rozo, Johanna
dc.date.accessioned2023-07-05T14:27:35Z
dc.date.accessioned2023-09-06T23:28:42Z
dc.date.available2023-07-05T14:27:35Z
dc.date.available2023-09-06T23:28:42Z
dc.date.created2023-07-05T14:27:35Z
dc.date.issued2023-06-06
dc.identifierhttp://hdl.handle.net/1992/68149
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726558
dc.description.abstractBreast cancer (BC) is the first leading cause of death in women around the world. Accurate subtyping of BC based on gene expression is crucial for optimizing treatment strategies. This study aims to improve BC subtyping by integrating comprehensive gene expression profiles and ancestry information. We acquired and analyzed a dataset of 406 RNA-Seq samples sequenced from patients with diverse ancestries, geographical origins, and ethnicities, combining 318 publicly available samples with 88 new samples. RNA-Seq from breast tumor data were used to genotype 10,397 SNPs and predict ancestries using the software ADMIXTURE, and combining the RNA-seq genotype calls with calls from the 1000 genomes project. We ran the genefu R package for predicting PAM50 subtypes, and recreated the results using the supervised machine learning algorithms random forest (RF) and support vector machine (SVM), achieving accuracy rates of 0.95 and 0.92, respectively. We integrated ancestry prediction to supervised machine learning experiments resulting in less favorable metrics, achieving accuracy values of 0.86 and 0.85 for RF and SVM, respectively. Additionally, we observed discrepancies between the assigned PAM50 subtypes, the gene expression patterns, and ancestry prediction. To overcome possible biases in the genefu predictions, we investigated the clusters obtained following an unsupervised machine learning strategy, based on the K-means algorithm. The results suggest novel gene expression-based subgroups within breast cancer tumors, where a part of the variance is explained by ancestry. In conclusion, this study highlights the importance of integrating gene expression profiles and ancestry information in BC clustering, contributing to understanding BC heterogeneity. The findings presented lay the groundwork for improved treatment decision-making in BC management.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Biología Computacional
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAdes, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., de Azambuja, E., Viale, G., Sotiriou, C., & Piccart, M. (2014). Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives. In Journal of Clinical Oncology (Vol. 32, Issue 25, pp. 2794-2803). American Society of Clinical Oncology. https://doi.org/10.1200/JCO.2013.54.1870
dc.relationAkay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2 PART 2), 3240-3247. https://doi.org/10.1016/J.ESWA.2008.01.009
dc.relationAlexander D.H., Novembre J., and Lange K. (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19:1655-1664.
dc.relationAnderson, B. O. (2014). Breast cancer - Thinking globally. In Science (Vol. 343, Issue 6178, p. 1403). American Association for the Advancement of Science. https://doi.org/10.1126/science.1253344
dc.relationAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
dc.relationArpino, G., Generali, D., Sapino, A., Lucia, D. M., Frassoldati, A., de Laurentis, M., Paolo, P., Mustacchi, G., Cazzaniga, M., de Placido, S., Conte, P., Cappelletti, M., Zanoni, V., Antonelli, A., Martinotti, M., Puglisi, F., Berruti, A., Bottini, A., & Dogliotti, L. (2013). Gene expression profiling in breast cancer: A clinical perspective. In Breast (Vol. 22, Issue 2, pp. 109-120). Churchill Livingstone. https://doi.org/10.1016/j.breast.2013.01.016
dc.relationAsri, H., Mousannif, H., al Moatassime, H., & Noel, T. (2016). Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis
dc.relationBailey ZD, Krieger N, Agenor M, Graves J, Linos N, Bassett MT. Structural racism and health inequities in the USA: ev-idence and interventions. Lancet. 2017;389:1453- 1463
dc.relationBarral-Arca, R., Pardo-Seco, J., Bello, X., Martinón-Torres, F., & Salas, A. (2019). Ancestry patterns inferred from massive RNA-seq data. RNA. doi.org/10.1261/rna.070052.118
dc.relationBeatson, G. T., & et al. (1896). On the Treatment of Inoperable Cases of Carcinoma of the Mamma: Suggestions for a New Method of Treatment, with Illustrative Cases. Trans Med Chir Soc Edinb, 15, 153-179.
dc.relationBerchick, E. R., Barnett, J. C., & Upton, R. D. (2019). Health Insurance Coverage in the United States: 2018 Current Population Reports.
dc.relationBertucci, F., Finetti, P., & Birnbaum, D. (2012). Basal Breast Cancer: A Complex and Deadly Molecular Subtype. In Current Molecular Medicine (Vol. 12).
dc.relationBolger A., Lhose M. & Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. In Bioinformatics (30(15): 2114-2120). doi: 10.1093/bioinformatics/btu170
dc.relationBrandão M., Pondé N. & Piccart-Gebhart M (2018). MammaprintTM: a comprehensive review. Future Oncology
dc.relationBreiman, L. Random Forests. Machine Learning 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324
dc.relationCadoo, K. A., Traina, T. A., & King, T. A. (2013). Advances in Molecular and Clinical Subtyping of Breast Cancer and Their Implications for Therapy. In Surgical Oncology Clinics of North America (Vol. 22, Issue 4, pp. 823-840). https://doi.org/10.1016/j.soc.2013.06.006
dc.relationChang CC., Chow CC., CAM Tellier L., Vattikuti S., Purcell SM., Lee JJ. (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience (Vol. 4, Issue 1) https://doi.org/10.1186/s13742-015-0047-8
dc.relationChang, J. C. (2007). HER2 inhibition: From discovery to clinical practice. In Clinical Cancer Research (Vol. 13, Issue 1, pp. 1-3). https://doi.org/10.1158/1078-0432.CCR-06-2405
dc.relationChandana Hari C., & Bala Krishna, G. (2021). Breast cancer detection using random forest classifier. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.01.461
dc.relationCho, N. (2016). Molecular subtypes and imaging phenotypes of breast cancer. In Ultrasonography (Vol. 35, Issue 4, pp. 281-288). Korean Society of Ultrasound in Medicine. https://doi.org/10.14366/usg.16030
dc.relationCiriello, G., Sinha, R., Hoadley, K. A., Jacobsen, A. S., Reva, B., Perou, C. M., Sander, C., & Schultz, N. (2013). The molecular diversity of Luminal A breast tumors. Breast Cancer Research and Treatment, 141(3), 409-420. https://doi.org/10.1007/s10549-013-2699-3
dc.relationCortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
dc.relationCreighton, C. J. (2012). The molecular profile of luminal B breast cancer. In Biologics: Targets and Therapy (Vol. 6, pp. 289-297). https://doi.org/10.2147/BTT.S29923
dc.relationDai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., & Shi, B. (2015). Breast cancer intrinsic subtype classification, clinical use and future trends. In Am J Cancer Res (Vol. 5, Issue 10). www.ajcr.us/
dc.relationDaneck P., Auton A., Abecasis G., Albers CA., Banks E., DePristo MA., Handsaker R., Lunter G., Marth G., Sherry ST., McVean G., Durbin R. & 1000 Genome Project Analysis Group. (2011) The Variant Call Format and VCFtools. Bioinformatics.
dc.relationDass, M. v., Rasheed, M. A., & Ali, M. M. (2014). Classification of Lung cancer subtypes by Data Mining technique. International Conference on Control, Instrumentation, Energy & Communications (CIEC).
dc.relationDubsky, P. C., Gnant, M. F. X., Taucher, S., Roka, S., Kandioler, D., Pichler-Gebhard, B., Agstner, I., Seifert, M., Sevelda, P., & Jakesz, R. (2002). Young age as an independent adverse prognostic factor in premenopausal patients with breast cancer. Clinical Breast Cancer, 3(1), 65-72. https://doi.org/10.3816/CBC.2002.n.013
dc.relationDrukker CA, van Tinteren H, Schmidt MK et al (2014). Long-term impact of the 70-gene signature on breast cancer outcome. Breast Cancer Res. Treat. 143(3), 587-592.
dc.relationElizabeth Hammond, M. H., Hayes, D. F., Dowsett, M., Craig Allred, D., Hagerty, K. L., Badve, S., Fitzgibbons, P. L., Francis, G., Goldstein, N. S., Hayes, M., Hicks, D. G., Lester, S., Love, R., Mangu, P. B., McShane, L., Miller, K., Kent Osborne, C., Paik, S., Perlmutter, J., ... Wolff, A. C. (2010). American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer (Unabridged Version).
dc.relationEroles, P., Bosch, A., Alejandro Pérez-Fidalgo, J., & Lluch, A. (2012). Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. In Cancer Treatment Reviews (Vol. 38, Issue 6, pp. 698-707). https://doi.org/10.1016/j.ctrv.2011.11.005
dc.relationFalush D, Stephens M, Pritchard JK (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics;164:1567-87.
dc.relationFejerman, L., Ahmadiyeh, N., Hu, D., Huntsman, S., Beckman, K. B., Caswell, J. L., Tsung, K., John, E. M., Torres-Mejia, G., Carvajal-Carmona, L., Echeverry, M. M., Tuazon, A. M. D., Ramirez, C., Bohórquez, M. E., Prieto, R., Criollo, Á., Ramírez, C., Estrada, A. P., Suáres, J. J., ... Ziv, E. (2014). Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nature Communications, 5. https://doi.org/10.1038/ncomms6260
dc.relationFejerman, L., Chen, G. K., Eng, C., Huntsman, S., Hu, D., Williams, A., Pasaniuc, B., John, E. M., Via, M., Gignoux, C., Ingles, S., Monroe, K. R., Kolonel, L. N., Torres-Mejía, G., Prez-stable, E. J., Gonález Burchard, E., Henderson, B. E., Haiman, C. A., & Ziv, E. (2012). Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US latinas. Human Molecular Genetics, 21(8), 1907-1917. https://doi.org/10.1093/hmg/ddr617
dc.relationFejerman, L., John, E. M., Huntsman, S., Beckman, K., Choudhry, S., Perez-Stable, E., Burchard, E. G., & Ziv, E. (2008). Genetic ancestry and risk of breast cancer among U.S. Latinas. Cancer Research, 68(23), 9723-9728. https://doi.org/10.1158/0008-5472.CAN-08-2039
dc.relationFejerman, L., Romieu, I., John, E. M., Lazcano-Ponce, E., Huntsman, S., Beckman, K. B., Pérez-Stable, E. J., Burchard, E. G., Ziv, E., & Torres-Mejía, G. (2010). European ancestry is positively associated with breast cancer risk in Mexican women. Cancer Epidemiology Biomarkers and Prevention, 19(4), 1074-1082. https://doi.org/10.1158/1055-9965.EPI-09-1193
dc.relationFlynn, W. F., Namburi, S., Paisie, C. A., Reddi, H. v., Li, S., Karuturi, R. K. M., & George, J. (2018). Pan-cancer machine learning predictors of primary site of origin and molecular subtype. BioRxiv. https://doi.org/10.1101/333914
dc.relationFoulkes, W. D., Stefansson, I. M., Chappuis, P. O., Bégin, L. R., Goffin, J. R., Wong, N., Trudel, M., & Akslen, L. A. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. Journal of the National Cancer Institute, 95(19), 1482-1485. https://doi.org/10.1093/jnci/djg050
dc.relationFragomeni, S. M., Sciallis, A., & Jeruss, J. S. (2018). Molecular Subtypes and Local-Regional Control of Breast Cancer. In Surgical Oncology Clinics of North America (Vol. 27, Issue 1, pp. 95-120). W.B. Saunders. https://doi.org/10.1016/j.soc.2017.08.005
dc.relationFredholm, H., Eaker, S., Frisell, J., Holmberg, L., Fredriksson, I., & Lindman, H. (2009). Breast cancer in young women: Poor survival despite intensive treatment. PLoS ONE, 4(11). https://doi.org/10.1371/journal.pone.0007695
dc.relationGarrett, J. T., & Arteaga, C. L. (2011). Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: Mechanisms and clinical implications. In Cancer Biology and Therapy (Vol. 11, Issue 9, pp. 793-800). https://doi.org/10.4161/cbt.11.9.15045
dc.relationGendoo D., Ratanasirigulchai N., Schröder M.S., Paré L., Parker J.S., Prat A., Haibe-Kains B., Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer, Bioinformatics, Volume 32, Issue 7, April 2016, Pages 1097-1099, https://doi.org/10.1093/bioinformatics/btv693
dc.relationGiaquinto, AN, Miller, KD, Tossas, KY, Winn, RA, Jemal, AM, Siegel, RL. Cancer statistics for African American/Black People 2022. CA Cancer J Clin. 2022. https://doi.org/10.3322/caac.21
dc.relationGLOBOCAN (2020) (http://gco.iarc.fr/today). World Health Organization.
dc.relationGnerlich, J. L., Deshpande, A. D., Jeffe, D. B., Sweet, A., White, N., & Margenthaler, J. A. (2009). Elevated Breast Cancer Mortality in Women Younger than Age 40 Years Compared with Older Women Is Attributed to Poorer Survival in Early-Stage Disease. Journal of the American College of Surgeons, 208(3), 341-347. https://doi.org/10.1016/j.jamcollsurg.2008.12.001
dc.relationGoldhirsch, A., Wood, W. C., Coates, A. S., Gelber, R. D., Thürlimann, B., & Senn, H. J. (2011). Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Annals of Oncology, 22(8), 1736-1747. https://doi.org/10.1093/annonc/mdr304
dc.relationHamerly, G. and Elkan, C. (2002) Alternatives to the K-Means Algorithm that Find Better Clusterings. Proceedings of the Eleventh International Conference on Information and Knowledge Management (CIKM), McLean, VA, 4-9 November 2002, 600-607. https://doi.org/10.1145/584792.584890
dc.relationHaque, R., Ahmed, S. A., Inzhakova, G., Shi, J., Avila, C., Polikoff, J., Bernstein, L., Enger, S. M., & Press, M. F. (2012). Impact of breast cancer subtypes and treatment on survival: An analysis spanning two decades. Cancer Epidemiology Biomarkers and Prevention, 21(10), 1848-1855. https://doi.org/10.1158/1055-9965.EPI-12-0474
dc.relationHijazi, H., & Chan, C. (2013). A classification framework applied to cancer gene expression profiles. Journal of Healthcare Engineering, 4(2), 255-283. https://doi.org/10.1260/2040-2295.4.2.255.
dc.relationHowlader N, Altekruse SF, Li CI, et al (2014). US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst;106:dju055.
dc.relationHuo D, Hu H, Rhie SK, et al (2017). Comparison of breast cancer molecular features and survival by African and European ancestry in The Cancer Genome Atlas. JAMA Oncol;3:1654-1662.
dc.relationIgnatiadis, M., Singhal, S. K., Desmedt, C., Haibe-Kains, B., Criscitiello, C., Andre, F., Loi, S., Piccart, M., Michiels, S., & Sotiriou, C. (2012). Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: A pooled analysis. Journal of Clinical Oncology, 30(16), 1996-2004. https://doi.org/10.1200/JCO.2011.39.5624
dc.relationIgnatiadis, M., & Sotiriou, C. (2013). Luminal breast cancer: From biology to treatment. In Nature Reviews Clinical Oncology (Vol. 10, Issue 9, pp. 494-506). https://doi.org/10.1038/nrclinonc.2013.124
dc.relationIqbal, J., Ginsburg, O., Rochon, P. A., Sun, P., & Narod, S. A. (2015). Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA - Journal of the American Medical Association, 313(2), 165-173. https://doi.org/10.1001/jama.2014.17322
dc.relationJack, R., Møller, H., Robson, T., & Davies, E. (2014). Breast cancer screening uptake among women from different ethnic groups in London: A population-based cohort study. BMJ Open, 4(10), e005586. https:// doi.org/10.1136/bmjopen-2014-005586
dc.relationJanuszewski, A., Tanna, N., & Stebbing, J. (2014). Ethnic variation in breast cancer incidence and outcomes[mdash]the debate continues. British Journal of Cancer, 110(1), 4-6. https://doi.org/10.1038/bjc. 2013.775
dc.relationJoyce, D. P., Murphy, D., Lowery, A. J., Curran, C., Barry, K., Malone, C., McLaughlin, R., & Kerin, M. J. (2017). Prospective comparison of outcome after treatment for triple-negative and non-triple-negative breast cancer. Surgeon, 15(5), 272-277. https://doi.org/10.1016/j.surge.2016.10.001
dc.relationJung, J., Kang, E., Gwak, J. M., Seo, A. N., Park, S. Y., Lee, A. S., Baek, H., Chae, S., Kim, E. K., & Kim, S. W. (2016). Association between basal-like phenotype and BRCA1/2 germline mutations in Korean breast cancer patients. Current Oncology, 23(5), 298-303. https://doi.org/10.3747/co.23.3054
dc.relationKeegan, T. H. M., Press, D. J., Tao, L., DeRouen, M. C., Kurian, A. W., Clarke, C. A., & Gomez, S. L. (2013). Impact of breast cancer subtypes on 3-year survival among adolescent and young adult women. Breast Cancer Research, 15(5). https://doi.org/10.1186/bcr3556
dc.relationKim, D., Paggi, J.M., Park, C. et al (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907-915. https://doi.org/10.1038/s41587-019-0201-4
dc.relationKoboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., Kalicki-Veizer, J., McMichael, J. F., Fulton, L. L., Dooling, D. J., Ding, L., Mardis, E. R., Wilson, R. K., Ally, A., Balasundaram, M., Butterfield, Y. S. N., Carlsen, R., Carter, C., Chu, A., Chuah, E., Chun, H. J. E., ... Palchik, J. D. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61-70. https://doi.org/10.1038/nature11412
dc.relationKumar, G. L., Communications Manager Global Marketing Communications, S., Badve, S. S., History, Frcp., & Professor, A. (2008). Connection 2008 | 9 Milestones in the Discovery of HER2 Proto-Oncogene and Trastuzumab (HerceptinTM).
dc.relationLi E, Guida JL, Tian Y, et al. Associations between mammographic density and tumor characteristics in Chinese women with breast cancer. Breast Cancer Res Treat. Sep 2019;177(2):527-536. doi:10.1007/s10549-019-05325-6 [PubMed: 31254158]
dc.relationLiao Y., Smyth G., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features (2014). Bioinformatics, 30(7):923-30. doi: 10.1093/bioinformatics/btt656. Epub 2013 Nov 13.
dc.relationLove MI, Huber W and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, pp. 550. http://dx.doi.org/10.1186/s13059-014-0550-8,
dc.relationLloyd, Stuart P. "Least squares quantization in PCM." Information Theory, IEEE Transactions on 28.2 (1982): 129-137.
dc.relationMacaulay BO, Aribisala BS, Akande SA, Akinnuwesi BA, Olabanjo OA. Breast cancer risk prediction in African women using Random Forest Classifier (2021). Cancer Treat Res Commun. 28:100396. doi: 10.1016/j.ctarc.2021.100396. Epub 2021 May 15. PMID: 34049004
dc.relationMarker, K. M., Zavala, V. A., Vidaurre, T., Lott, P. C., Vásquez, J. N., Casavilca-Zambrano, S., Calderón, M., Abugattas, J. E., Gómez, H. L., Fuentes, H. A., Picoaga, R. L., Cotrina, J. M., Neciosup, S. P., Castañeda, C. A., Morante, Z., Valencia, F., Torres, J., Echeverry, M., Bohórquez, M. E., ... Suarez, J. J. (2020). Human epidermal growth factor receptor 2-positive breast cancer is associated with Indigenous American ancestry in Latin American women. Cancer Research, 80(9), 1893-1901. https://doi.org/10.1158/0008-5472.CAN-19-3659
dc.relationMarx V. A star is born: the updated human reference genome. Methagora. 2013; http://blogs.nature.com/methagora/2013/12/the_updated_human_reference_genome.html. Accessed 6 Aug 2022.
dc.relationMathews J. Nadeem S., Levine A., Pouryahya M., Deasy J., Tannenbaum A. Robust and interpretable PAM50 reclassification exhibits survival advantage for myoepithelial and immune phenotypes. NPJ Breast Cancer. 2019; 5: 30. Published online 2019 Sep 9. doi: 10.1038/s41523-019-0124-8
dc.relationMavaddat, N., Barrowdale, D., Andrulis, I. L., Domchek, S. M., Eccles, D., Nevanlinna, H., Ramus, S. J., Spurdle, A., Robson, M., Sherman, M., Mulligan, A. M., Couch, F. J., Engel, C., McGuffog, L., Healey, S., Sinilnikova, O. M., Southey, M. C., Terry, M. B., Goldgar, D., ... Antoniou, A. C. (2012). Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 21(1), 134-147. https://doi.org/10.1158/1055-9965.EPI-11-0775
dc.relationMedina HN, Callahan KE, Koru-Sengul T, Maheshwari S, Liu Q, Goel N, Pinheiro PS. Elevated breast cancer mortality among highly educated Asian American women. PLoS One. 2022 May 18;17(5):e0268617. doi: 10.1371/journal.pone.0268617. PMID: 35584182; PMCID: PMC9116645.
dc.relationMi H, Muruganujan A, Thomas PD (2013). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res: 41(Database issue):D377-86. doi: 10.1093/nar/gks1118. Epub 2012 Nov 27. PMID: 23193289; PMCID: PMC3531194.
dc.relationMueller, C., Haymond, A., Davis, J. B., Williams, A., & Espina, V. (2018). Protein biomarkers for subtyping breast cancer and implications for future research. In Expert Review of Proteomics (Vol. 15, Issue 2, pp. 131-152). Taylor and Francis Ltd. https://doi.org/10.1080/14789450.2018.1421071
dc.relationNahleh, Z., Otoukesh, S., Mirshahidi, H. R., Nguyen, A. L., Nagaraj, G., Botrus, G., Badri, N., Diab, N., Alvarado, A., Sanchez, L. A., & Dwivedi, A. K. (2018). Disparities in breast cancer: a multi-institutional comparative analysis focusing on American Hispanics. Cancer Medicine, 7(6), 2710-2717. https://doi.org/10.1002/cam4.1509
dc.relationNassar, A., Khoor, A., Radhakrishnan, R., Radhakrishnan, A., & Cohen, C. (2014). Correlation of HER2 overexpression with gene amplification and its relation to chromosome 17 aneuploidy: a 5-year experience with invasive ductal and lobular carcinomas. In Int J Clin Exp Pathol (Vol. 7, Issue 9). www.ijcep.com/
dc.relationNedeljkovic, M., & Damjanovic, A. (2019). Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells, 8(9). https://doi.org/10.3390/cells8090957
dc.relationNindrea, R. D., Aryandono, T., Lazuardi, L., & Dwiprahasto, I. (2018). Diagnostic accuracy of different machine learning algorithms for breast cancer risk calculation: A meta-analysis. Asian Pacific Journal of Cancer Prevention, 19(7), 1747-1752. https://doi.org/10.22034/APJCP.2018.19.7.1747
dc.relationNixon, A. J., Neuberg, D., Hayes, D. F., Gelman, R., Connolly, J. L., Schnitt, S., Abner, A., Recht, A., Vicini, F., & Harris, J. R. (1992). Relationship of Patient Age to Pathologic Features of the Tumor and Prognosis for Patients With Stage I or II Breast Cancer. In Journal of Clinical Oncology (Vol. 12, Issue 5).
dc.relationNorum, J. H., Andersen, K., & Sørlie, T. (2014). Lessons learned from the intrinsic subtypes of breast cancer in the quest for precision therapy. In British Journal of Surgery (Vol. 101, Issue 8, pp. 925-938). John Wiley and Sons Ltd. https://doi.org/10.1002/bjs.9562
dc.relationOoi, S. L., Martinez, M. E., & Li, C. I. (2011). Disparities in breast cancer characteristics and outcomes by race/ethnicity. Breast Cancer Research and Treatment, 127(3), 729-738. https://doi.org/10.1007/s10549-010-1191-6
dc.relationParise, C. A., Bauer, K. R., & Caggiano, V. (2010). Variation in breast cancer subtypes with age and race/ethnicity. In Critical Reviews in Oncology/Hematology (Vol. 76, Issue 1, pp. 44-52). https://doi.org/10.1016/j.critrevonc.2009.09.002
dc.relationParise C, Caggiano V. Breast Cancer Mortality among Asian-American Women in California: Variation according to Ethnicity and Tumor Subtype (2016). J Breast Cancer. 19(2):112-21. doi:10.4048/jbc.2016.19.2.112 [PubMed: 27382386]
dc.relationParker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 27(8):1160-7. doi: 10.1200/JCO.2008.18.1370. Epub 2009 Feb 9. PMID: 19204204; PMCID: PMC2667820.
dc.relationPedregosa F., Varoquaux G., et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 12:2825-2830.
dc.relationPerou, C. M., Sùrlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A.-L., Brown, P. O., & Botstein, D. (2000). Molecular portraits of human breast tumours. https://doi.org/10.1038/35021089
dc.relationPertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT & Salzberg SL (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads, Nature Biotechnology, doi:10.1038/nbt.3122
dc.relationPetersen, S. S., Sarkissyan, M., Wu, Y., Clayton, S., & Vadgama, J. v. (2018). Time to clinical follow-up after abnormal mammogram among African American and hispanic women. Journal of Health Care for the Poor and Underserved, 29(1), 448-462. https://doi.org/10.1353/hpu.2018.0030
dc.relationPhilipovskiy, A., Campbell, A., Heydarian, R., Castillo, B., Dwivedi, A. K., McCallum, R., Aguilera, R., Gaur, S., & Nahleh, Z. (2020). Adherence to adjuvant aromatase inhibitor therapy among postmenopausal hispanic/latino women with breast cancer. Anticancer Research, 40(2), 857-864. https://doi.org/10.21873/anticanres.14018
dc.relationPinheiro, P. S., Sherman, R. L., Trapido, E. J., Fleming, L. E., Huang, Y., Gomez-Marin, O., & Lee, D. (2009). Cancer incidence in first generation U.S. Hispanics: Cubans, Mexicans, Puerto Ricans, and New Latinos. Cancer Epidemiology Biomarkers and Prevention, 18(8), 2162-2169. https://doi.org/10.1158/1055-9965.EPI-09-0329
dc.relationPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959. doi:10.1093/genetics/155.2.945
dc.relationPolat, K., & Günes, S. (2007). Breast cancer diagnosis using least square support vector machine. Digital Signal Processing: A Review Journal, 17(4), 694-701. https://doi.org/10.1016/J.DSP.2006.10.008
dc.relationPrat, A., Pineda, E., Adamo, B., Galván, P., Fernández, A., Gaba, L., Díez, M., Viladot, M., Arance, A., & Muñoz, M. (2015). Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 24, S26-S35. https://doi.org/10.1016/j.breast.2015.07.008
dc.relationPowe BD, Hamilton J, Hancock N, Johnson N, Finnie R, Ko J, Brooks P, Boggan M Jr. Quality of life of African American cancer survivors. A review of the literature. Cancer. 2007 Jan 15;109(2 Suppl):435-45. doi: 10.1002/cncr.22358. PMID: 17149759.
dc.relationPu, M., Messer, K., Davies, S. R., Vickery, T. L., Pittman, E., Parker, B. A., Ellis, M. J., Flatt, S. W., Marinac, C. R., Nelson, S. H., Mardis, E. R., Pierce, J. P., & Natarajan, L. (2020). Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Research and Treatment, 179(1), 197. https://doi.org/10.1007/S10549-019-05446-Y
dc.relationR Core Team, (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relationReynoso-Noverón, N., Villareal-Garza, C., Soto-Perez-de-Celiz, E., Ramirez-Ugalde, M. T., Alvarado-Miranda, A., Cabrera-Galeana, P., Meneses-García, A., Lara-Medina, F., Bargalló-Rocha, E., & Mohar, A. (2017). Clinical and Epidemiological Profile of Breast Cancer in Mexico: Results of the Seguro Popular. American Society of Clinical Oncology, 3(6).
dc.relationRibeiro, E., Ganzinelli, M., Andreis, D., Bertoni, R., Giardini, R., Fox, S. B., Broggini, M., Bottini, A., Zanoni, V., Bazzola, L., Foroni, C., Generali, D., & Damia, G. (2013). Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0066243
dc.relationRobinson MD, McCarthy DJ, Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616.
dc.relationRoelands, J., Mall, R., Almeer, H. et al (2021). Ancestry-associated transcriptomic profiles of breast cancer in patients of African, Arab, and European ancestry. npj Breast Cancer 7, 10 . https://doi.org/10.1038/s41523-021-00215-x
dc.relationRomero-Cordoba, S. L., Salido-Guadarrama, I., Rebollar-Vega, R., Bautista-Piña, V., Dominguez-Reyes, C., Tenorio-Torres, A., Villegas-Carlos, F., Fernández-López, J. C., Uribe-Figueroa, L., Alfaro-Ruiz, L., & Hidalgo-Miranda, A. (2021). Comprehensive omic characterization of breast cancer in Mexican-Hispanic women. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22478-5
dc.relationSEER. (2019). Breast Recent Trends in SEER Age-Adjusted Incidence Rates, 2000-2018.
dc.relationSegal, N. H., Pavlidis, P., Noble, W. S., Antonescu, C. R., Viale, A., Wesley, U. V., et al. (2003). Classification of Clear-Cell Sarcoma as a Subtype of Melanoma by Genomic Profiling. Journal of Clinical Oncology, 21(9), 1775-1781. doi:10.1200/jco.2003.10.108
dc.relationSerrano-Gómez, S. J. (2016). PERFIL MOLECULAR DEL CÁNCER DE MAMA EN LA POBLACIÓN COLOMBIANA. Pontificia Universidad Javeriana.
dc.relationSlamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & Mcguire, W. L. (1987). Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2lneu Oncogene. Science, 177. http://science.sciencemag.org/
dc.relationSpratt, D. E., Chan, T., Waldron, L., Speers, C., Feng, F. Y., Ogunwobi, O., & Osborne, J. R. (2016). Racial/ethnic disparities in genomic sequencing. JAMA Oncology, 2(8), 1070-1074. https://doi.org/10.1001/jamaoncol.2016.1854
dc.relationStorey, J. D., Madeoy, J., Strout, J. L., Wurfel, M., Ronald, J., & Akey, J. M. (2007). Gene-expression variation within and among human populations. American Journal of Human Genetics, 80(3), 502-509. https://doi.org/10.1086/512017
dc.relationStranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D., Montgomery, S., Tavaré, S., Deloukas, P., & Dermitzakis, E. T. (2007). Population genomics of human gene expression. Nature Genetics 2007 39:10, 39(10), 1217-1224. https://doi.org/10.1038/ng2142
dc.relationSoh KP, Szczurek E, Sakoparnig T, et al (2017). Predicting cancer type from tumour DNA signatures. Genome Med.;9(1):104.
dc.relationSu Y, Zheng Y, Zheng W, et al (2011). Distinct distribution and prognostic significance of molecular subtypes of breast cancer in Chinese women: a population-based cohort study. BMC Cancer. Jul 12;11:292. doi:10.1186/1471-2407-11-292 [PubMed: 21749714]
dc.relationSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660
dc.relationSzymiczek, A., Lone, A., & Akbari, M. R. (2021). Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review. In Clinical Genetics (Vol. 99, Issue 5, pp. 613-637). Blackwell Publishing Ltd. https://doi.org/10.1111/cge.13900
dc.relationTarawneh, Omar & Otair, Mohammed & Altarawneh, Moath & Abu Addous, Hayfa & Tarawneh, Monther & Almomani, Malek A. (2022). Breast Cancer Classification using Decision Tree Algorithms. International Journal of Advanced Computer Science and Applications. 13. 10.14569/IJACSA.2022.0130478.
dc.relationTavassoli, F. A. & Schnitt, S. J. Pathology of the Breast (Elsevier, New York, 1992)
dc.relationTelli ML, Chang ET, Kurian AW, et al. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry (2011). Breast Cancer Res Treat. 127(2):471-8. doi:10.1007/ s10549-010-1173-8 [PubMed: 20957431]
dc.relationTello D., Gil J., Loaiza C., Riascos J., Cardozo N., Duitama J. (2019) NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics; 35(22): 4716-4723.
dc.relationTekesin, K., Akar, E., Gunes, M. E., Bayrak, S., Ozturk, T., Altinay, S., & Tural, D. (2019). PTEN loss is a predictive marker for HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. JBUON, 24(5), 1920-1926.
dc.relationThe 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature. 526, pages 68-74
dc.relationTibshirani R, Hastie T, Narasimhan B, et al (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad SciUSA. 99:6567-6572.
dc.relationvan't Veer LJ, Dai H, van de Vijver MJ et al (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530.
dc.relationVillarreal-Garza, C., Mohar, A., Bargallo-Rocha, J. E., Lasa-Gonsebatt, F., Reynoso-Noverón, N., Matus-Santos, J., Cabrera, P., Arce-Salinas, C., Lara-Medina, F., Alvarado-Miranda, A., Ramírez-Ugalde, M. T., & Soto-Perez-de-Celis, E. (2017). Molecular Subtypes and Prognosis in Young Mexican Women With Breast Cancer. Clinical Breast Cancer, 17(3), e95-e102. https://doi.org/10.1016/j.clbc.2016.11.007
dc.relationWilliams DR, Lawrence JA, Davis BA. Racism and health: evidence and needed research. Annu Rev Public Health. 2019;40:105- 125.
dc.relationWisniewski, J. M., & Walker, B. (2020). Association of Simulated Patient Race/Ethnicity with Scheduling of Primary Care Appointments. JAMA Network Open, 3(1). https://doi.org/10.1001/jamanetworkopen.2019.20010
dc.relationYe, J., Xia, X., Dong, W., Hao, H., Meng, L., Yang, Y., Wang, R., Lyu, Y., & Liu, Y. (2016). Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. International Journal of Nanomedicine, 11, 4125-4140. https://doi.org/10.2147/IJN.S113638
dc.relationYedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, Alo RA, Payton M, Tchounwou PB. Health and Racial Disparity in Breast Cancer. Adv Exp Med Biol. 2019;1152:31-49. doi: 10.1007/978-3-030-20301-6_3. PMID: 31456178; PMCID: PMC6941147.
dc.relationYu, Z., Wang, Z., Yu, X., & Zhang, Z. (2020). RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/4737969
dc.relationYu AYL, Thomas SM, DiLalla GD, Greenup RA, Hwang ES, Hyslop T, Menendez CS, Plichta JK, Tolnitch LA, Fayanju OM (2022). Disease characteristics and mortality among Asian women with breast cancer. Cancer. 128(5):1024-1037. doi: 10.1002/cncr.34015. Epub 2021 Nov 18. PMID: 34792814; PMCID: PMC8837687.
dc.relationWickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
dc.relationWu, Jiande & Hicks, Chindo. (2021). Breast Cancer Type Classification Using Machine Learning. Journal of Personalized Medicine. 11. 61. 10.3390/jpm11020061.
dc.relationZaha, D. C. (2014). Significance of immunohistochemistry in breast cancer. In World Journal of Clinical Oncology (Vol. 5, Issue 3, pp. 382-392). Baishideng Publishing Group Co., Limited. https://doi.org/10.5306/wjco.v5.i3.382
dc.relationZavala, V. A., Bracci, P. M., Carethers, J. M., Carvajal-Carmona, L., Coggins, N. B., Cruz-Correa, M. R., Davis, M., de Smith, A. J., Dutil, J., Figueiredo, J. C., Fox, R., Graves, K. D., Gomez, S. L., Llera, A., Neuhausen, S. L., Newman, L., Nguyen, T., Palmer, J. R., Palmer, N. R., ... Fejerman, L. (2021). Cancer health disparities in racial/ethnic minorities in the United States. In British Journal of Cancer (Vol. 124, Issue 2, pp. 315-332). Springer Nature. https://doi.org/10.1038/s41416-020-01038-6
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleBreast cancer diagnosis and prognosis improvement based on a complete gene expression profile and ancestry
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución