dc.contributor | Osma Cruz, Johann Faccelo | |
dc.contributor | Cruz Jiménez, Juan Carlos | |
dc.contributor | Guido, Sonnemann | |
dc.contributor | Vélez Cuervo, Camilo | |
dc.contributor | Ábrego Pérez, Adriana Lourdes | |
dc.contributor | Biomicrosystems | |
dc.creator | Fuentes Daza, Olga Patricia | |
dc.date.accessioned | 2025-07-31 | |
dc.date.accessioned | 2023-09-06T23:28:23Z | |
dc.date.available | 2025-07-31 | |
dc.date.available | 2023-09-06T23:28:23Z | |
dc.date.created | 2025-07-31 | |
dc.date.issued | 2023-07-21 | |
dc.identifier | http://hdl.handle.net/1992/69089 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726554 | |
dc.description.abstract | In the face of escalating industrialization and its consequent pollution, the global community is increasingly invested in exploring efficient solutions for the removal of toxic pollutants from wastewater. Our research group, Biomicrosystems, has focused on exploring the use of nanocompounds based on magnetic nanoparticles as a potential solution for wastewater treatment. These nanocompounds have shown promising capabilities in remediating pollutants due to their large surface area and high reactivity. Incorporating microfluidic technologies into the use of these nanocompounds has gained popularity due to their potential for environmental detection, operational cost, lower investment, and reduced infrastructure requirements. Therefore, the chapter two of this dissertation focuses on a specific approach, which involves the modeling and evaluation of six different micromixer designs specifically intended specifically for wastewater treatment. These micromixers are meticulously assessed based on their velocity profiles, pressure drops, and flow patterns under controlled mixing conditions. Additionally, a comprehensive life cycle assessment (LCA) analysis is conducted to understand the environmental impact of these micromixers and assess the sustainability of the mixing process.
Magnetite nanoparticles (MNPs) are the most used nanoparticles in our research group for manufacturing nanocompounds. They have garnered particular attention for their cost- effectiveness, ease of manufacture, modifiability, and magnetic recoverability. However, the potential of MNPs for environmental remediation largely depends on assuring efficient synthesis methods that avoid substantial environmental impacts. Microfluidic techniques have emerged as a promising approach for the controlled and efficient production of MNPs with improved properties. In that context, chapter three of this dissertation proposes three uniquely configured micromixers (serpentine, triangular, and 3D), each designed to facilitate controlled growth and nucleation processes for the formation of uniformly sized and crystalline MNPs. Experiments confirm that these micromixers effectively synthesized MNPs with homogeneous morphologies, particle size distributions, and crystalline structures. A subsequent comparative LCA, considering water and energy consumption, demonstrates the micromixers superior environmental performance compared to conventional batch co-precipitation synthesis. Chapter four extends this research by conducting an exhaustive LCA on MNPs production at laboratory and industrial scales using micromixers. This analysis highlighted the potential of these microfluidic platforms to enable a sustainable MNPs synthesis process and their viability for large-scale production. As a result, this dissertation delves into the synthesis of MNPs with an emphasis on enhancing their efficacy and sustainability in environmental applications.
A comprehensive understanding of the sustainability performance of the synthesis methods of MNPs can be achieved by integrating environmental, economic, and exergetic analyses. The LCA methodology appears well-suited to evaluate potential environmental impacts associated with such manufacturing methods. However, a comprehensive analysis should also consider the economic aspects to ensure the viability and overall economic sustainability of these manufacturing process. Therefore, conducting an economic analysis provides valuable information into the financial feasibility of sustainable practices. Additionally, an exergetic analysis provides insights related to the quantification of the exergy losses at each stage of the process, helping identify areas for improvement, optimize energy usage, and minimize resource consumption. Consequently, chapter five presents a comparative assessment at an industrial scale, evaluating the environmental, economic, and exergetic feasibility of MNPs production, illuminating both the advantages and challenges of implementing micromixers for large-scale MNPs production.
In conclusion, this dissertation provides invaluable insights for industries seeking to adopt sustainable and efficient manufacturing processes for MNPs. By providing comprehensive analysis and practical recommendations, this research contributes substantially to the transition towards environmentally friendly and resource-efficient production methods. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Doctorado en Ingeniería | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.relation | Sharma, P.; Dutta, D.; Udayan, A.; Kumar, S. Industrial Wastewater Purification through Metal Pollution Reduction Employing Microbes and Magnetic Nanocomposites. J. Environ. Chem. Eng. 2021, 9 (6), 106673. https://doi.org/https://doi.org/10.1016/j.jece.2021.106673. | |
dc.relation | Singh, A. K.; Kumar, A.; Chandra, R. Environmental Pollutants of Paper Industry Wastewater and Their Toxic Effects on Human Health and Ecosystem. Bioresour. Technol. Reports 2022, 20, 101250. | |
dc.relation | Mokarram, M.; Saber, A.; Sheykhi, V. Effects of Heavy Metal Contamination on River Water Quality Due to Release of Industrial Effluents. J. Clean. Prod. 2020, 277, 123380. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123380. | |
dc.relation | Bhateria, R.; Singh, R. A Review on Nanotechnological Application of Magnetic Iron Oxides for Heavy Metal Removal. J. Water Process Eng. 2019, 31 (March), 100845. https://doi.org/10.1016/j.jwpe.2019.100845. | |
dc.relation | Vendrell-Puigmitja, L.; Abril, M.; Proia, L.; Espinosa Angona, C.; Ricart, M.; Oatley- Radcliffe, D. L.; Williams, P. M.; Zanain, M.; Llenas, L. Assessing the Effects of Metal Mining Effluents on Freshwater Ecosystems Using Biofilm as an Ecological Indicator: Comparison between Nanofiltration and Nanofiltration with Electrocoagulation Treatment Technologies. Ecol. Indic. 2020, 113 (February). https://doi.org/10.1016/j.ecolind.2020.106213. | |
dc.relation | Vareda, J. P.; Valente, A. J. M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manage. 2019, 246 (December 2018), 101¿118. https://doi.org/10.1016/j.jenvman.2019.05.126. | |
dc.relation | He, Z.; Cheng, X.; Kyzas, G. Z.; Fu, J. Pharmaceuticals Pollution of Aquaculture and Its Management in China. J. Mol. Liq. 2016, 223, 781¿789. https://doi.org/10.1016/j.molliq.2016.09.005. | |
dc.relation | Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of Co- Contaminated Soil with Heavy Metals and Pesticides: Influence Factors, Mechanisms and Evaluation Methods. Chem. Eng. J. 2020, 398 (May), 125657. https://doi.org/10.1016/j.cej.2020.125657. | |
dc.relation | El-sayed, M. E. A. Nanoadsorbents for Water and Wastewater Remediation. Sci. Total Environ. 2020, 739, 139903. https://doi.org/10.1016/j.scitotenv.2020.139903. | |
dc.relation | Ranjith, K. S.; Manivel, P.; Rajendrakumar, R. T.; Uyar, T. Multifunctional ZnO
Nanorod-Reduced Graphene Oxide Hybrids Nanocomposites for Effective Water Remediation: Effective Sunlight Driven Degradation of Organic Dyes and Rapid Heavy Metal Adsorption. Chem. Eng. J. 2017, 325, 588¿600. https://doi.org/10.1016/j.cej.2017.05.105. | |
dc.relation | Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197. | |
dc.relation | Yu, R.; He, L.; Cai, R.; Li, B.; Li, Z.; Yang, K. Heavy Metal Pollution and Health Risk in China. Glob. Heal. J. 2017, 1 (1), 47¿55. https://doi.org/10.1016/s2414-
6447(19)30059-4. | |
dc.relation | Yu, B.; Wang, X.; Fei, K.; Xiao, G.; Ma, D. Heavy Metal Concentrations in Aquatic
Organisms ( Fi Shes , Shrimp and Crabs ) and Health Risk Assessment in China. Mar. Pollut. Bull. 2020, 159 (December 2019), 111505. https://doi.org/10.1016/j.marpolbul.2020.111505. | |
dc.relation | Tian, J.; Hu, J.; He, W.; Zhou, L.; Huang, Y. Parental Exposure to Cadmium Chloride Causes Developmental Toxicity and Thyroid Endocrine Disruption in Zebrafish Offspring. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 2020, 234 (April), 108782. https://doi.org/10.1016/j.cbpc.2020.108782. | |
dc.relation | Reyes-Hinojosa, D.; Lozada-Pérez, C. A.; Zamudio Cuevas, Y.; López-Reyes, A.; Martínez-Nava, G.; Fernández-Torres, J.; Olivos-Meza, A.; Landa-Solis, C.; Gutiérrez-Ruiz, M. C.; Rojas del Castillo, E.; Martínez-Flores, K. Toxicity of Cadmium in Musculoskeletal Diseases. Environ. Toxicol. Pharmacol. 2019, 72 (June), 103219. https://doi.org/10.1016/j.etap.2019.103219. | |
dc.relation | Andleeb, S.; Ahmad, Z.; Mahmood, T.; Bao, S.; Arif Saeed, A.; Jha, S. K. Evaluating Toxicity Impacts of Environmental Exposed Chromium on Small Indian Mongoose (Urva Auropunctatus) Hematological, Biochemical and Histopathological Functioning. Chemosphere 2020, 259. https://doi.org/10.1016/j.chemosphere.2020.127485. | |
dc.relation | Zambelli, B.; Uversky, V. N.; Ciurli, S. Nickel Impact on Human Health: An Intrinsic Disorder Perspective. Biochim. Biophys. Acta - Proteins Proteomics 2016, 1864 (12), 1714¿1731. https://doi.org/10.1016/j.bbapap.2016.09.008. | |
dc.relation | Carolin, C. F.; Kumar, P. S.; Saravanan, A.; Joshiba, G. J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5 (3), 2782¿2799. https://doi.org/10.1016/j.jece.2017.05.029. | |
dc.relation | Ameh, T.; Sayes, C. M. The Potential Exposure and Hazards of Copper Nanoparticles: A Review. Environ. Toxicol. Pharmacol. 2019, 71 (July), 103220. https://doi.org/10.1016/j.etap.2019.103220. | |
dc.relation | Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of Mercury: Molecular Evidence. Chemosphere 2020, 245. https://doi.org/10.1016/j.chemosphere.2019.125586. | |
dc.relation | Sruthi, S.; Ashtami, J.; Mohanan, P. V. Biomedical Application and Hidden Toxicity of Zinc Oxide Nanoparticles. Mater. Today Chem. 2018, 10, 175¿186. https://doi.org/10.1016/j.mtchem.2018.09.008. | |
dc.relation | Sruthi, S.; Mohanan, P. V. Engineered Zinc Oxide Nanoparticles; Biological Interactions at the Organ Level. Curr. Med. Chem. 2016, 23 (35), 4057¿4068. https://doi.org/10.2174/0929867323666160607224628. | |
dc.relation | Patel, B. R.; Noroozifar, M.; Kerman, K. Review¿Nanocomposite-Based Sensors for Voltammetric Detection of Hazardous Phenolic Pollutants in Water. J. Electrochem. Soc. 2020, 167 (3), 37568. https://doi.org/10.1149/1945-7111/ab71fa. | |
dc.relation | Sas, O. G.; Castro, M.; Domínguez, Á.; González, B. Removing Phenolic Pollutants Using Deep Eutectic Solvents. Sep. Purif. Technol. 2019, 227, 115703. https://doi.org/https://doi.org/10.1016/j.seppur.2019.115703. | |
dc.relation | Gernjak, W.; Krutzler, T.; Glaser, A.; Malato, S.; Caceres, J.; Bauer, R.; Fernández- Alba, A. R. Photo-Fenton Treatment of Water Containing Natural Phenolic Pollutants. Chemosphere 2003, 50 (1), 71¿78. https://doi.org/https://doi.org/10.1016/S0045-6535(02)00403-4. | |
dc.relation | El-Aassar, M. R.; Ibrahim, O. M.; Hashem, F. S.; Ali, A. S. M.; Elzain, A. A.; Mohamed, F. M. Fabrication of Polyaniline@¿-Cyclodextrin Nanocomposite for Adsorption of Carcinogenic Phenol from Wastewater. ACS Appl. Bio Mater. 2022. https://doi.org/10.1021/acsabm.2c00581. | |
dc.relation | Subramaniam, M. N.; Goh, P. S.; Lau, W. J.; Ismail, A. F. The Roles of Nanomaterials in Conventional and Emerging Technologies for Heavy Metal Removal: A State-of- the-Art Review. Nanomaterials 2019, 9 (4). https://doi.org/10.3390/nano9040625. | |
dc.relation | Chaaban, M. A. Hazardous Waste Source Reduction in Materials and Processing Technologies. J. Mater. Process. Technol. 2001, 119 (1), 336¿343. https://doi.org/https://doi.org/10.1016/S0924-0136(01)00920-7. | |
dc.relation | Cheng, X. 10 - Nanostructures: Fabrication and Applications. In Nanolithography; Feldman, M., Ed.; Woodhead Publishing, 2014; pp 348¿375. https://doi.org/https://doi.org/10.1533/9780857098757.348. | |
dc.relation | Saleh, T. A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067. | |
dc.relation | Pandey, R. K.; Prajapati, V. K. Molecular and Immunological Toxic Effects of Nanoparticles. Int. J. Biol. Macromol. 2018, 107 (PartA), 1278¿1293. https://doi.org/10.1016/j.ijbiomac.2017.09.110. | |
dc.relation | Keçili, R.; Büyüktiryaki, S.; Hussain, C. M. 7 - Membrane Applications of Nanomaterials. In Handbook of Nanomaterials in Analytical Chemistry; Mustansar Hussain, C., Ed.; Elsevier, 2020; pp 159¿182. https://doi.org/https://doi.org/10.1016/B978-0-12-816699-4.00007-4. | |
dc.relation | Gleiter, H. Nanostructured Materials: Basic Concepts and Microstructure. Acta Mater. 2000, 48 (1), 1¿29. https://doi.org/10.1016/S1359-6454(99)00285-2. | |
dc.relation | Malakar, A.; Kanel, S. R.; Ray, C.; Snow, D. D.; Nadagouda, M. N. Nanomaterials in the Environment, Human Exposure Pathway, and Health Effects: A Review. Sci. Total Environ. 2021, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470. | |
dc.relation | Bandala, E. R.; Berli, M. Engineered Nanomaterials ( ENMs ) and Their Role at the Nexus of Food , Energy , and Water. Mater. Sci. Energy Technol. 2019, 2 (1), 29¿40. https://doi.org/10.1016/j.mset.2018.09.004. | |
dc.relation | Khan, W. S.; Asmatulu, R. Chapter 1 - Nanotechnology Emerging Trends, Markets, and Concerns. In Nanotechnology Safety; Asmatulu, R., Ed.; Elsevier: Amsterdam, 2013; pp 1¿16. https://doi.org/https://doi.org/10.1016/B978-0-444-59438-9.00001-1. | |
dc.relation | Long, N. N.; Vu, L. Van; Kiem, C. D.; Doanh, S. C.; Nguyet, C. T.; Hang, P. T.; Thien, N. D.; Quynh, L. M. Synthesis and Optical Properties of Colloidal Gold Nanoparticles. J. Phys. Conf. Ser. 2009, 187. https://doi.org/10.1088/1742- 6596/187/1/012026. | |
dc.relation | Koo, K. M.; Soda, N.; Shiddiky, M. J. A. Magnetic Nanomaterial¿Based Electrochemical Biosensors for the Detection of Diverse Circulating Cancer
Biomarkers. Curr. Opin. Electrochem. 2021, 25, 100645.
https://doi.org/https://doi.org/10.1016/j.coelec.2020.100645. | |
dc.relation | Qi, W.; Gao, Z. Metal Oxide Nanoparticles in Electroanalysis. Electroanalysis 2015,
2074¿2090. https://doi.org/10.1002/elan.201500024. | |
dc.relation | Baabu, P. R. S.; Kumar, H. K.; Gumpu, M. B.; Babu K, J.; Kulandaisamy, A. J.;
Rayappan, J. B. B. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. Materials (Basel). 2023, 16 (1). https://doi.org/10.3390/ma16010059. | |
dc.relation | Selvaraj, R.; Pai, S.; Vinayagam, R.; Varadavenkatesan, T.; Kumar, P. S.; Duc, P. A.; Rangasamy, G. A Recent Update on Green Synthesized Iron and Iron Oxide Nanoparticles for Environmental Applications. Chemosphere 2022, 308, 136331. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136331. | |
dc.relation | Li, L.; Fan, M.; Brown, R. C.; Leeuwen, J. (Hans) Van; Wang, J.; Wang, W.; Song, Y.; Zhang, P. Synthesis, Properties, and Environmental Applications of Nanoscale Iron- Based Materials: A Review. Crit. Rev. Environ. Sci. Technol. 2006, 36 (5), 405¿431. https://doi.org/10.1080/10643380600620387. | |
dc.relation | Muthukumar, H.; Malla, S.; Matheswaran, M. Immobilization of Xylose Reductase Enzyme on Cysteine-Functionalized Murraya Koenigii Mediated Magnetite Nanoparticles. Mater. Lett. 2020, 261, 127125. https://doi.org/10.1016/j.matlet.2019.127125. | |
dc.relation | Mahmoud, M. E.; Saleh, M. M.; Zaki, M. M.; Nabil, G. M. A Sustainable Nanocomposite for Removal of Heavy Metals from Water Based on Crosslinked Sodium Alginate with Iron Oxide Waste Material from Steel Industry. J. Environ. Chem. Eng. 2020, 8 (4), 104015. https://doi.org/10.1016/j.jece.2020.104015. | |
dc.relation | Pillai, P.; Kakadiya, N.; Timaniya, Z.; Dharaskar, S.; Sillanpaa, M. Removal of Arsenic Using Iron Oxide Amended with Rice Husk Nanoparticles from Aqueous Solution. Mater. Today Proc. 2019, 28, 830¿835. https://doi.org/10.1016/j.matpr.2019.12.307. | |
dc.relation | Shouli, A.; Menati, S.; Sayyahi, S. Copper (II) Chelate-Bonded Magnetite
Nanoparticles : A New Magnetically Retrievable Catalyst for the Synthesis of Propargylamines. Comptes rendus - Chim. 2017, 20 (7), 765¿772. https://doi.org/10.1016/j.crci.2017.03.010. | |
dc.relation | Rodriguez, A. F. R.; Costa, T. P.; Bini, R. A.; Faria, F. S. E. D. V; Azevedo, R. B.; Jr, M. J.; Coaquira, J. A. H.; Martínez, M. A. R.; Mantilla, J. C.; Marques, R. F. C.; Morais, P. C. Surface Functionalization of Magnetite Nanoparticle : A New Approach Using Condensation of Alkoxysilanes. Phys. B Phys. Condens. Matter 2017, 521 (March), 141¿147. https://doi.org/10.1016/j.physb.2017.06.043. | |
dc.relation | Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H.; Rashid, R.; Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnology, Monit. Manag. 2023, 20, 100801. https://doi.org/https://doi.org/10.1016/j.enmm.2023.100801. | |
dc.relation | Ayd¿n, S.; Bedük, F.; Ulvi, A.; Ayd¿n, M. E. Simple and Effective Removal of Psychiatric Pharmaceuticals from Wastewater Treatment Plant Effluents by Magnetite Red Mud Nanoparticles. Sci. Total Environ. 2021, 784, 147174. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147174. | |
dc.relation | Sadhukhan, J.; Joshi, N.; Shemfe, M.; Lloyd, J. R. Life Cycle Assessment of Sustainable Raw Material Acquisition for Functional Magnetite Bionanoparticle Production. J. Environ. Manage. 2017, 199, 116¿125. https://doi.org/10.1016/j.jenvman.2017.05.048. | |
dc.relation | Bui, T. Q.; Ton, S. N.-C.; Duong, A. T.; Tran, H. T. Size-Dependent Magnetic Responsiveness of Magnetite Nanoparticles Synthesised by Co-Precipitation and Solvothermal Methods. J. Sci. Adv. Mater. Devices 2018, 3 (1), 107¿112. https://doi.org/https://doi.org/10.1016/j.jsamd.2017.11.002. | |
dc.relation | Katz, E. Synthesis, Properties and Applications of Magnetic Nanoparticles and Nanowires¿A Brief Introduction. Magnetochemistry 2019, 5 (4). https://doi.org/10.3390/magnetochemistry5040061. | |
dc.relation | Mascolo, M. C.; Pei, Y.; Ring, T. A. Room Temperature Co-Precipitation Synthesis of
Magnetite Nanoparticles in a Large PH Window with Different Bases. Materials
(Basel). 2013, 6 (12), 5549¿5567. https://doi.org/10.3390/ma6125549. | |
dc.relation | Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N.
Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2010, 110 (4), 2574. https://doi.org/10.1021/cr900197g. | |
dc.relation | Schwaminger, S. P.; Bauer, D.; Fraga-García, P.; Wagner, F. E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19 (2), 246¿255. https://doi.org/10.1039/c6ce02421a. | |
dc.relation | Li, Z.; Chanéac, C.; Berger, G.; Delaunay, S.; Graff, A.; Lefèvre, G. Mechanism and Kinetics of Magnetite Oxidation under Hydrothermal Conditions. RSC Adv. 2019, 9 (58), 33633¿33642. https://doi.org/10.1039/c9ra03234g. | |
dc.relation | Ching, T.; Nie, X.; Chang, S.-Y.; Toh, Y.-C.; Hashimoto, M. Chapter 1 - Techniques and Materials for the Fabrication of Microfluidic Devices. In Principles of Human Organs-on-Chips; Mozafari, M., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing, 2023; pp 1¿36. https://doi.org/https://doi.org/10.1016/B978-0- 12-823536-2.00014-6. | |
dc.relation | Rapp, B. E. Chapter 1 - Introduction. In Microfluidics (Second Edition); Rapp, B. E., Ed.; Micro and Nano Technologies; Elsevier, 2023; pp 3¿7. https://doi.org/https://doi.org/10.1016/B978-0-12-824022-9.00018-8. | |
dc.relation | Niculescu, A.-G.; Chircov, C.; Grumezescu, A. M. Magnetite Nanoparticles: Synthesis Methods ¿ A Comparative Review. Methods 2022, 199, 16¿27. https://doi.org/https://doi.org/10.1016/j.ymeth.2021.04.018. | |
dc.relation | Whitesides, G. M. The Origins and the Future of Microfluidics. Nature 2006, 442 (7101), 368¿373. https://doi.org/10.1038/nature05058. | |
dc.relation | Moreira, N. S.; Chagas, C. L. S.; Oliveira, K. A.; Duarte-Junior, G. F.; de Souza, F. R.; Santhiago, M.; Garcia, C. D.; Kubota, L. T.; Coltro, W. K. T. Fabrication of Microwell Plates and Microfluidic Devices in Polyester Films Using a Cutting Printer. Anal. Chim. Acta 2020, 1119, 1¿10. https://doi.org/https://doi.org/10.1016/j.aca.2020.04.047. | |
dc.relation | Nie, J.; Liang, Y.; Zhang, Y.; Le, S.; Li, D.; Zhang, S. One-Step Patterning of Hollow Microstructures in Paper by Laser Cutting to Create Microfluidic Analytical Devices. Analyst 2013, 138 (2), 671¿676. https://doi.org/10.1039/c2an36219h. | |
dc.relation | Id, B. K. G.; Id, A. R. J.; Id, C. J. L.; Goenner, B. L. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. 2018. https://doi.org/10.3390/inventions3030060. | |
dc.relation | Florez, S. L.; Campaña, A. L.; Noguera, M. J.; Quezada, V.; Fuentes, O. P.; Cruz, J. C.; Osma, J. F. CFD Analysis and Life Cycle Assessment of Continuous Synthesis of Magnetite Nanoparticles Using 2D and 3D Micromixers. Micromachines 2022, 13 (6), 970. https://doi.org/10.3390/mi13060970. | |
dc.relation | Jacob-Lopes, E.; Zepka, L. Q.; Deprá, M. C. Chapter 2 - Fundamentals of Life Cycle Assessment: Definitions, Terminology, and Concepts. In Sustainability Metrics and Indicators of Environmental Impact; Elsevier, 2021; pp 7¿28. https://doi.org/https://doi.org/10.1016/B978-0-12-823411-2.00010-4. | |
dc.relation | Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B. P.; Pennington, D. W. Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environ. Int. 2004, 30 (5), 701¿720. https://doi.org/https://doi.org/10.1016/j.envint.2003.11.005. | |
dc.relation | ISO. ISO 14040:1997 - Environmental management - Life Cycle Assessment - Principles and Framework. International organization for standardization. https://www.iso.org/standard/23151.html (accessed 2022-10-10). | |
dc.relation | Slotte, M.; Metha, G.; Zevenhoven, R. Life Cycle Indicator Comparison of Copper , Silver , Zinc and Aluminum Nanoparticle Production through Electric Arc Evaporation or Chemical Reduction. Int. J. Energy Environ. Eng. 2015, 233¿243. https://doi.org/10.1007/s40095-015-0171-3. | |
dc.relation | Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. Int. J. Life Cycle Assess. 2003, 8 (6), 324¿330. https://doi.org/10.1007/BF02978505. | |
dc.relation | Raghuvanshi, S.; Bhakar, V.; Sowmya, C.; Sangwan, K. S. Waste Water Treatment Plant Life Cycle Assessment: Treatment Process to Reuse of Water. Procedia CIRP 2017, 61, 761¿766. https://doi.org/https://doi.org/10.1016/j.procir.2016.11.170. | |
dc.relation | Jørgensen, S. V; Hauschild, M. Z.; Nielsen, P. H. Assessment of Urgent Impacts of Greenhouse Gas Emissions¿the Climate Tipping Potential (CTP). Int. J. Life Cycle Assess. 2014, 19 (4), 919¿930. https://doi.org/10.1007/s11367-013-0693-y. | |
dc.relation | Klinglmair, M.; Sala, S.; Brandão, M. Assessing Resource Depletion in LCA: A Review of Methods and Methodological Issues. Int. J. Life Cycle Assess. 2014, 19 (3), 580¿592. https://doi.org/10.1007/s11367-013-0650-9. | |
dc.relation | Miseljic, M.; Olsen, S. I. Life-Cycle Assessment of Engineered Nanomaterials: A Literature Review of Assessment Status. J. Nanoparticle Res. 2014, 16 (6). https://doi.org/10.1007/s11051-014-2427-x. | |
dc.relation | Owsianiak, M.; Laurent, A.; Bjørn, A.; Hauschild, M. Z. IMPACT 2002+, ReCiPe 2008 and ILCD¿s Recommended Practice for Characterization Modelling in Life Cycle Impact Assessment: A Case Study-Based Comparison. Int. J. Life Cycle Assess. 2014, 19 (5), 1007¿1021. https://doi.org/10.1007/s11367-014-0708-3. | |
dc.relation | Bare, J. C.; Hofstetter, P.; Pennington, D. W.; de Haes, H. A. U. Midpoints versus Endpoints: The Sacrifices and Benefits. Int. J. Life Cycle Assess. 2000, 5 (6), 319¿326. https://doi.org/10.1007/BF02978665. | |
dc.relation | Ismaeel, W. S. E. Midpoint and Endpoint Impact Categories in Green Building Rating Systems. J. Clean. Prod. 2018, 182, 783¿793. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.01.217. | |
dc.relation | Meramo-Hurtado, S.; Moreno-Sader, K.; González-Delgado, Á. D. Computer-Aided Simulation and Exergy Analysis of TiO 2 Nanoparticles Production via Green Chemistry. PeerJ 2019, 7, e8113. https://doi.org/10.7717/peerj.8113. | |
dc.relation | Hachhach, M.; Akram, H.; Hanafi, M.; Achak, O.; Chafik, T. Simulation and Sensitivity Analysis of Molybdenum Disulfide Nanoparticle Production Using Aspen Plus. Int. J. Chem. Eng. 2019, 2019, 3953862. https://doi.org/10.1155/2019/3953862. | |
dc.relation | Patiño-Ruiz, D. A.; Meramo-Hurtado, S. I.; Mehrvar, M.; Rehmann, L.; Quiñones- Bolaños, E.; González-Delgado, Á. D.; Herrera, A. Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS Omega 2021, 6 (5), 3644¿3658. https://doi.org/10.1021/acsomega.0c05184. | |
dc.relation | Arteaga-Díaz, S. J.; Meramo, S.; González-Delgado, Á. D. Computer-Aided Modeling, Simulation, and Exergy Analysis of Large-Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. ACS Omega 2021, 6 (45), 30666¿30673. https://doi.org/10.1021/acsomega.1c04497. | |
dc.relation | Tavares, R.; Monteiro, E.; Tabet, F.; Rouboa, A. Numerical Investigation of Optimum Operating Conditions for Syngas and Hydrogen Production from Biomass Gasification Using Aspen Plus. Renew. Energy 2020, 146, 1309¿1314. https://doi.org/10.1016/j.renene.2019.07.051. | |
dc.relation | HajiHashemi, M.; Mazhkoo, S.; Dadfar, H.; Livani, E.; Naseri Varnosefaderani, A.; Pourali, O.; Najafi Nobar, S.; Dutta, A. Combined Heat and Power Production in a Pilot-Scale Biomass Gasification System: Experimental Study and Kinetic Simulation Using ASPEN Plus. Energy 2023, 276, 127506. https://doi.org/https://doi.org/10.1016/j.energy.2023.127506. | |
dc.relation | Sarath Yadav, E.; Indiran, T.; Nayak, D.; Aditya Kumar, C.; Selvakumar, M. Simulation Study of Distillation Column Using Aspen Plus. Mater. Today Proc. 2022, 48, 330¿337. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.609. | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | Life Cycle Assessment (LCA) of nanocompounds synthesis based on magnetite (Fe3O4) nanoparticles: conventional and microfluidic methods | |
dc.type | Trabajo de grado - Doctorado | |