dc.contributorBravo Vega, Carlos Andrés
dc.contributorArteaga Bejarano, José Ricardo
dc.contributorEspinoza, Baltazar
dc.contributorCordovez Alvarez, Juan Manuel
dc.contributorBIOMAC
dc.creatorGómez Patiño, Ana Gabriela
dc.date.accessioned2023-08-14T13:12:37Z
dc.date.accessioned2023-09-06T23:26:39Z
dc.date.available2023-08-14T13:12:37Z
dc.date.available2023-09-06T23:26:39Z
dc.date.created2023-08-14T13:12:37Z
dc.date.issued2023-06-05
dc.identifierhttp://hdl.handle.net/1992/69669
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726523
dc.description.abstractEl síndrome de Guillain-Barré (SGB), es una polineuropatía aguda inmunomediada que es precedida por una infección que induce a una respuesta inmune. Los modelos matemáticos de dinámicas celulares para enfermedades infecciosas y autoinmunes nos permiten un acercamiento para entender esta enfermedad. Este trabajo de tesis proponen dos modelos epidemiológicos en el hospeador y uno de tratamiento , los cuales tienen un set de ecuaciones diferenciales El primero cuenta con tres variables que son las partículas virales (V), células Inmunes (I) y de Schwann (S) y el segundo cuenta cuatros variables que en adición están las inmunoglobulinas (Ig), finalmente se plantea un tercero que es el de plasmaféresis. Estos modelos permiten generar simulaciones del cambio de cada variable en un tiempo estimado de horas o días. Las simulaciones numéricas mostraron que los modelos muestra los cambios de la respuesta inmune y de las células de Schwann durante y después del proceso de infeccioso.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relationAndayani, P. y Sari, L. R. (2021). The cell-to-cell transmission of Guillain-Barre syndromes: modeling and analysis. Commun. Math. Biol. Neurosci. 2021 Article-ID.
dc.relationBerg, B. Van den et al. (2014). Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nature Reviews Neurology 10 (8) 469-482.
dc.relationBest, K. y Perelson, A. S. (2018). Mathematical modeling of within-host Zika virus dynamics. Immunological reviews 285 (1) 81-96
dc.relationCervantes, C. E., Bloch, E. M. y Sperati, C. J. (2023). Therapeutic Plasma Exchange: Core Curriculum 2023. American Journal of Kidney Diseases.
dc.relationChevret, S., Hughes, R. A. y Annane, D. (2017). Plasma exchange for Guillain-Barre syndrome. Cochrane Database of Systematic Reviews . (2)
dc.relationCourchamp, F., Berec, L. y Gascoigne, J. (2008). Allee effects in ecology and conservation. OUP Oxford.
dc.relationElettreby, M. F., Ahmed, E. y Safan, M. (2019). A simple mathematical model for Guillain-Barre syndrome. Advances in Difference Equations 2019 (1) 1-18.
dc.relationEsposito, S. y Longo, M. R. (2017). Guillain-barre syndrome. Autoimmunity reviews 16 (1) 96-101.
dc.relationGo, N. et al. (2014). Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? PLoS One 9 (9) e10
dc.relationGómez-Sánchez, J. A. et al. (2017). After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination. Journal of Neuroscience 37 (37) 9086-9099.
dc.relationGonzález-Salazar, C. et al. (2022). Clinical Neurophysiology of Zika Virus-Related Disorders of the Peripheral Nervous System in Adults. Journal of Clinical Neurophysiology 39 (4) 253-258.
dc.relationGrazioli, A. et al. (2020). Perioperative applications of therapeutic plasma exchange in cardiac surgery: a narrative review. Journal of Cardiothoracic and Vascular Anesthesia 34 (12) 3429-3443.
dc.relationGuevara-Silva, E. et al. (2021). Características clínicas y respuesta al recambio plasmatico terapeutico en los pacientes con síndrome de Guillain Barre..Revista Peruana de Medicina Experimental y Salud Publica 38 89-94.
dc.relationHeffernan, J. M. (2011). Mathematical immunology of infectious diseases.
dc.relationHughes, R. A. et al. (2007). Immunotherapy for Guillain-Barre syndrome: a systematic review. Brain 130 (9) 2245-2257
dc.relationHughes, R. A. et al. (2007). Immunotherapy for Guillain-Barre syndrome: a systematic review. Brain 130 (9) 2245-2257
dc.relationJasti, A. K. et al. (2016). Guillain-Barre syndrome: causes, immunopathogenic mechanisms and treatment. Expert review of clinical immunology 12 (11) 1175-1189.
dc.relationKerry, C. (2022). Basic Serological Testing. Magill's Medical Guide (Online Edition
dc.relationKoike, H. y Katsuno, M. (2021). The role of macrophages in Guillain-Barre syndrome and chronic inflammatory demyelinating polyneuropathy. Neurology and Clinical Neuroscience 9 (3) 203-210
dc.relationKuwabara, S. y Yuki, N. (2013). Axonal Guillain-Barre syndrome: concepts and controversies. The Lancet Neurology 12 (12) 1180-118
dc.relationKuwahara, M. y Kusunoki, S. (2018). Mechanism and spectrum of anti-glycolipid antibody-mediated chronic inflammatory demyelinating polyneuropathy. Clinical and Experimental Neuroimmunology 9 (1) 65-74.
dc.relationLaman, J. D. et al. (2022). Guillain-Barre syndrome: expanding the concept of molecular mimicry. Trends in immunology.
dc.relationLehmann, H. C. y Hartung, H.-P. (2011). Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. Journal of neuroimmunology 231 (1-2) 61-69
dc.relationLopez, P. H. et al. (2008). Structural requirements of anti-GD1a antibodies determine their target specificity. Brain 131 (7) 1926-1939.
dc.relationNise, N. S. (2011). Control system engineering, john wiley & sons. Inc, New York.
dc.relationPadmanabhan, A. et al. (2019). Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the eighth special issue. Journal of clinical apheresis 34 (3) 171-354.
dc.relationRestrepo-Jimenez, P. et al. (2018). The immunotherapy of Guillain-Barre syndrome. Expert Opinion on Biological Therapy 18 (6) 619-631.
dc.relationRoman-Filip, C. et al. (2019). Therapeutic plasma exchange and double filtration plasmapheresis in severe neuroimmune disorders. Acta Clinica Croatica 58 (4.) 621-62
dc.relationSardella-Silva, G., Mietto, B. S. y Ribeiro-Resende, V. T. (2021). Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 11 (12) 1887.
dc.relationSari, L. R. et al. (2020). Mathematical model of Guillain-Barre syndrome with Holling type II functional response. Commun. Math. Biol. Neurosci. 2020 Article-ID.
dc.relationShahrizaila, N., Lehmann, H. C. y Kuwabara, S. (2021). Guillain-Barre syndrome. The Lancet 397 (10280) 1214-1228
dc.relationSoyturk, H. y Yilmaz, M. (2020). A comparison of IL-17 and IL-34 concentrations in the cerebrospinal fluid of patients with acute inflammatory demyelinating neuropathy and chronic inflammatory demyelinating polyneuropathy. Revista da Associacao Medica Brasileira 66 1583-1588
dc.relationTakeuchi, Y. (1996). Global dynamical properties of Lotka-Volterra systems. World Scientific
dc.relationTawakul, A. A. et al. (2021). Guillain-Barre syndrome in the COVID-19 pandemic. Neurology International 14 (1) 34-48.
dc.relationWanschitz, J. et al. (2003). Distinct time pattern of complement activation and cytotoxic T cell response in Guillain-Barre syndrome. Brain 126 (9) 2034-2042.
dc.relationWard, D. M. (2011). Conventional apheresis therapies: a review. Journal of clinical apheresis 26 (5) 230-238
dc.relationWillison, H. J., Jacobs, B. C. y Doorn, P. A. van (2016). Guillain-barre syndrome. The Lancet 388 (10045) 717-727.
dc.relationWodarz, D. (2007). Killer cell dynamics: mathematical and computational approaches to immunology. Springer
dc.relationXie, C. B., Jane-Wit, D. y Pober, J. S. (2020). Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. The American journal of pathology 190 (6) 1138-1150.
dc.relationZhang, R. et al. (2020). Optimizing management of replacement fluids for therapeutic plasma exchange: Use of an automated mathematical model to predict post procedure fibrinogen and antithrombin levels in high-risk patients. Journal of Clinical Apheresis 35 (1) 41-49.
dc.relationZiganshin, R. H. et al. (2016). The pathogenesis of the demyelinating form of Guillain-Barre Syndrome (GBS): Proteo-peptidomic and immunological profiling of physio logical fluids. Molecular & Cellular Proteomics 15 (7) 2366-2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleModelos matemáticos para entender el Síndrome de Guillain-Barré
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución