dc.contributorCardona Guio, Alexander
dc.contributorCortissoz Iriarte, Jean Carlos
dc.creatorDorado Toro, Daniel Fernando
dc.date.accessioned2023-08-02T13:28:27Z
dc.date.accessioned2023-09-06T23:23:19Z
dc.date.available2023-08-02T13:28:27Z
dc.date.available2023-09-06T23:23:19Z
dc.date.created2023-08-02T13:28:27Z
dc.date.issued2023-06-01
dc.identifierhttp://hdl.handle.net/1992/69072
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726471
dc.description.abstractIn this work, we use this moment map to relate solutions to certain differential equations to (i) diffeomorphisms of compact Riemann surfaces, (ii) additional Kähler metrics on a given compact Kähler manifold, and (iii) symplectic forms on 4-manifolds.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMatemáticas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Matemáticas
dc.relationF. Klein, «Vergleichende Betrachtungen über neuere geometrische Forschungen», de, Mathematische Annalen 43, 63-100 (1893).
dc.relationK. Mann, «The Structure of Homeomorphism and Diffeomorphism Groups», en, Notices of the Amer- ican Mathematical Society 68, 1 (2021).
dc.relationS. K. Donaldson, «Moment maps and diffeomorphisms», Surveys in differential geometry 3, 107-127 (2002).
dc.relationS. K. Donaldson, «Moment maps in differential geometry», Surveys in differential geometry 8, 171-189 (2003).
dc.relationD. McDuff and D. Salamon, Introduction to symplectic topology (Oxford University Press, Mar. 2017).
dc.relationR. H. Abraham and J. E. Marsden, Foundations of mechanics, eng, 2. ed., rev., enl., and reset (Perseus Books, Cambridge, Mass, 2002).
dc.relationR. Bryant, «An introduction to Lie groups and symplectic geometry», in Geometry and Quantum Field Theory, Vol. 1, edited by D. S. Freed and K. K. Uhlenbeck, IAS/Park City mathematics series (AMS and IAS/Park City Mathematics Institute, 1995), pp. 5-181.
dc.relationD. Huybrechts, Complex geometry: an introduction, Universitext (Springer, Berlin ; New York, 2005), 309 pp.
dc.relationN. Hitchin, «Hyperkähler manifolds», Séminaire Bourbaki 34, 137-166 (1992).
dc.relationA. Schmeding, An introduction to infinite-dimensional differential geometry, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2022).
dc.relationH. Amiri, H. Glöckner, and A. Schmeding, «Lie groupoids of mappings taking values in a Lie groupoid», en, Archivum Mathematicum, 307-356 (2020).
dc.relationA. Banyaga, The structure of classical diffeomorphism groups, Mathematics and Its Applications (Springer Verlag, 1997).
dc.relationK.-H. Neeb, Infinite-Dimensional Lie Groups, 2005.
dc.relationJ. M. Lee, Introduction to smooth manifolds, 2nd ed, Graduate texts in mathematics 218 (Springer, 2013).
dc.relationH. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts Basler Lehrbücher (Birkhäuser, Basel, 1994).
dc.relationJ. Marsden and A. Weinstein, «Reduction of symplectic manifolds with symmetry», en, Reports on Mathematical Physics 5, 121-130 (1974).
dc.relationS. K. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, eng, Reprinted, Oxford math- ematical monographs (Clarendon Press, Oxford, 2007).
dc.relationE. Calabi, «Métriques kählériennes et fibrés holomorphes», Annales scientifiques de l'École normale supérieure 12, 269-294 (1979).
dc.relationP. Michor and C. Vizman, «n-transitivity of certain diffeomorphism groups.», Acta Mathematica Universitatis Comenianae. New Series 63, 221-225 (1994).
dc.relationH. Omori, «On Banach-Lie groups acting on finite dimensional manifolds», Tohoku Mathematical Journal 30, 223-250 (1978).
dc.relationJ. B. Conway, A Course in Functional Analysis, en, Vol. 96, Graduate Texts in Mathematics (Springer New York, New York, NY, 2007).
dc.relationR. Meise and D. Vogt, Introduction to functional analysis, Oxford graduate texts in mathematics 2 (Clarendon Press ; Oxford University Press, Oxford : New York, 1997).
dc.relationP. W. Michor, Manifolds of differentiable mappings, Shiva mathematics series ; 3 (Shiva Pub, Orpington [Eng.], 1980).
dc.relationL. C. Evans, Partial differential equations, 2nd ed, Graduate studies in mathematics v. 19, OCLC: ocn465190110 (American Mathematical Society, Providence, R.I, 2010).
dc.relationC.-V. Pao, Nonlinear parabolic and elliptic equations, Softcover reprint of the hardcover 1st edition 1992 (Springer Science + Business Media, LLC, New York, 2013).
dc.relationD. H. Phong, J. Song, and J. Sturm, «Complex Monge Ampere Equations», 10.48550/ARXIV.1209. 2203 (2012).
dc.relationX. Chen, «On the lower bound of the Mabuchi energy and its application», International Mathematics Research Notices 2000, 607 (2000).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleThe moment map and the group of volume-preserving diffeomorphisms: applications to differential geometry
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución