dc.contributorJiménez Estévez, Guillermo Andrés
dc.contributorMatus, Marcelo
dc.contributorOliveira de Jesus, Paulo Manuel de
dc.creatorSáenz Díaz, Carlos Salomón
dc.date.accessioned2023-02-02T19:25:31Z
dc.date.accessioned2023-09-06T23:22:22Z
dc.date.available2023-02-02T19:25:31Z
dc.date.available2023-09-06T23:22:22Z
dc.date.created2023-02-02T19:25:31Z
dc.date.issued2022-02-02
dc.identifierhttp://hdl.handle.net/1992/64558
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726459
dc.description.abstractEsta tesis presenta un modelo de planificación del dia siguiente (day ahead) para la operación de sistemas combinados de energía eléctrica y gas natural, centrándose en el papel de Power to Gas (PtG) y su impacto en los costos y emisiones netas de CO2 del sistema. Se modela el sistema eléctrico con in modelo DC de unitcommitment, y se utiliza un modelo hidráulico transitorio para el sistema de gas natural con flujos de gas almacenado en tuberia (linepack) y flujos bidireccionales en las tuberías. El objetivo es medir la influencia de Power to Gas en la consecución de una operación de neutralidad de carbono, aumentando el uso de energía renovable y maximizando la producción de gas natural sintético. Se evalúa el valor de la co-optimizacion diaria entre la gestión de las redes de energía eléctrica y gas natural, y se destaca la importancia de tener en cuenta las limitaciones de las tuberías de gas al analizar sistemas con una alta producción de gas natural y fuentes intermitentes de energía renovable. Los resultados demuestran que la optimización de la combinación de gas y electricidad puede minimizar la restricción de la energía renovable excedente, utilizándola para producir gas sintético. Se proponen tres casos de estudio con diferentes mezclas energéticas, que muestran que Power to Gas permite maximizar el uso de energía renovable y reducir las emisiones de CO2.
dc.description.abstractIn order to reach the carbon peak and begin the transition to a low-carbon economy, it will be necessary to take aggressive action to reduce CO2 emissions and accelerate the deployment of clean energy technologies. It is estimated that for achieving the Paris agreement we will need to capture between 2-10 billion tons of Co2 per year [3]. This will require strong leadership, policy action, and investments in research and development to overcome the barriers to decarbonization. Such actions are replacing coal power with clean alternatives and phasing out fossil fuel subsidies, and ensuring that the full costs (environmental, health, and social) of burning fossil fuels are reflected in their prices, thereby eliminating existing market distortions This thesis presents a day-ahead dispatch model for the operation of integrated power and natural gas systems focusing on the role of the Power to Gas (PtG) and its impact on the cost and net CO2 emissions of the system. The power system is modeled as a DC power flow with unit commitment restrictions and a transient hydraulic gas model for the natural gas system with line-pack and bidirectional flows in the pipelines. The focus is to quantify the power-to-gas role in the objective of carbon neutrality operation through the interaction of power generation and synthetic natural gas (syn-gas) production, by maximizing renewable energy use. The model is used to analyze the value of day-ahead coordination between power and natural gas network operations, and to demonstrate the importance of considering gas pipeline limitations when analyzing power systems with high levels of natural gas production and intermittent renewable energy sources. The results show that natural gas and electricity coupling optimization can minimize the curtailment of excess renewable energy by using it to produce syn-gas, three cases of study are proposed with different energy mixes, demonstrating that power to gas allows the maximization of renewable energy by minimizing the CO2 emission. It was found that, for syn-gas to be competitive, several requirements must be met: its energy source must be the excess of renewable energy, the capacity factor must be at least a certain percentage, and the amount of carbon captured must be economically recognized. Based on the literature review the power to gas stations was characterized. In the study case, power-to-gas technology maximizes the use of the renewable energy potential, for instance in different penetration levels of renewable energy considered in the study case, it was found that in order to produce the optimal amount of syn-gas the sizing of power to gas plants must be related with the expected excess of renewable energy.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Eléctrica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.relationA. Alabdulwahab, A. Abusorrah, X. Zhang, and M. Shahidehpour. Stochastic security-constrained scheduling of coordinated electricity and natural gas infrastructures. IEEE Systems Journal, 11(3):1674-1683, 2015.
dc.relationC. Borraz-S´anchez, R. Bent, S. Backhaus, H. Hijazi, and P. V. Hentenryck. Convex relaxations for gas expansion planning. INFORMS Journal on Computing, 28(4):645-656, 2016.
dc.relationK. Bourzac. We have the technology. Nature, 550(7675):S66-S69, 2017.
dc.relationclimeworks. Hybridge, 2022.
dc.relationS. Dale. Bp statistical review of world energy. British Petroleum Company, 2016.
dc.relationC. Drechsler and D. W. Agar. Intensified integrated direct air capture-power-to-gas process based on h2o and co2 from ambient air. Applied Energy, 273:115076, 2020.
dc.relationN. Eggers, J. N. B¨ottger, L. Kerpen, B. U. Sankol, and T. Birth. Refining vdi guideline 4663 to evaluate the efficiency of a power-to-gas process by employing limit-oriented indicators. Energy Efficiency, 14(7):1-15, 2021.
dc.relationW. Fan, Q. Tan, A. Zhang, L. Ju, Y. Wang, Z. Yin, and X. Li. A bi-level optimization model of integrated energy system considering wind power uncertainty. Renewable Energy, 202:973-991, 2023.
dc.relationO. J. Guerra-Fernandez, B. Sergi, B. Hodge, M. Craig, K. A. Pambour, R. T. Sopgwi, and C. Brancucci. Electric power grid and natural gas network operations and coordination. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.
dc.relationJ. Haumaier, P. Hauser, H. Hobbie, and D. M¨ost. Gr¨unes gas f¨ur die gaswirtschaft-regionale power-to-gas-potentiale aus onshore-windenergie in deutschland. Zeitschrift f¨ur Energiewirtschaft, 44(2):61-83, 2020
dc.relationC. He, L. Wu, T. Liu, and M. Shahidehpour. Robust co-optimization scheduling of electricity and natural gas systems via admm. IEEE Transactions on Sustainable Energy, 8(2):658-670, 2016.
dc.relationC. He, X. Zhang, T. Liu, L. Wu, and M. Shahidehpour. Coordination of interdependent electricity grid and natural gas network-a review. Current Sustainable/Renewable Energy Reports, 5(1):23- 36, 2018
dc.relationG. He, H. Yan, K. Liu, B. Yu, G. Cui, J. Zheng, and Y. Pan. An optimization method of multiple energy flows for cchp based on fuzzy theory and pso. In 2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), pages 607-612. IEEE; IEEE Power & Energy Soc; Tsinghua Univ; SEE; Energy Internet Res Inst; Beijing Assoc Sci & Technol; Tsinghua Berkeley Shenzhen Inst, 2017. IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, PEOPLES R CHINA, NOV 26-28, 2017.
dc.relationY. He, M. Shahidehpour, Z. Li, C. Guo, and B. Zhu. Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage. IEEE Transactions on Sustainable Energy, 9(3):1061-1071, 2017.
dc.relationIEA. Gas market report q4-2021. In 2021 Gas Market Report Q4-2021 including Global Gas Security Review 2021, pages 1-8. IEA, 2021.
dc.relationS. Kamalinia, L. Wu, and M. Shahidehpour. Stochastic midterm coordination of hydro and natural gas flexibilities for wind energy integration. IEEE Transactions on Sustainable Energy, 5(4):1070-1079, 2014.
dc.relationF. Liu, Z. Bie, and X. Wang. Day-ahead dispatch of integrated electricity and natural gas system considering reserve scheduling and renewable uncertainties. IEEE Transactions on Sustainable Energy, 10(2):646-658, 2018.
dc.relationG. Mahrenholz and V. Kaminski. Liquidity issues in the us natural gas market: Part 1 of 2. Global Commodities Applied Research Digest, Winter 2019, 2019.
dc.relationS. D. Manshadi and M. E. Khodayar. Coordinated operation of electricity and natural gas systems: A convex relaxation approach. IEEE Transactions on Smart Grid, 10(3):3342-3354, 2018.
dc.relationM. Marchese, G. Buffo, M. Santarelli, and A. Lanzini. Co2 from direct air capture as carbon feedstock for fischer-tropsch chemicals and fuels: Energy and economic analysis. Journal of CO2 Utilization, 46:101487, 2021.
dc.relationM. A. Mirzaei, M. Nazari-Heris, B. Mohammadi-Ivatloo, K. Zare, M. Marzband, and A. AnvariMoghaddam. A novel hybrid framework for co-optimization of power and natural gas networks integrated with emerging technologies. IEEE Systems Journal, 14(3):3598-3608, 2020.
dc.relationM. A. Mirzaei, A. Sadeghi-Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-khah, and J. P. Catalao. Integration of emerging resources in igdt-based robust scheduling of combined power and natural gas systems considering flexible ramping products. Energy, 189:116195, 2019.
dc.relationM. A. Mirzaei, A. S. Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-khah, and J. P. Catalao. Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system. Journal of cleaner production, 223:747-758, 2019.
dc.relationA. Mohammadi and M. Mehrpooya. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 158:632-655, 2018.
dc.relationC. Ordoudis, P. Pinson, and J. M. Morales. An integrated market for electricity and natural gas systems with stochastic power producers. European Journal of Operational Research, 272(2):642-654, 2019.
dc.relationC. O. Ordoudis, J. K. Kazempour, P. P. Pinson, and A. S. Schwele. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. 2020
dc.relationM. Ozturk and I. Dincer. A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62):31511-31522, 2021.
dc.relationN. J. Peress and N. Karas. Aligning us natural gas and electricity markets to reduce costs, enhance market efficiency and reliability. Technical report, Technical report, Environmental Defense Fund, 2017.
dc.relationR. Rubio, D. Ojeda-Esteybar, O. Ano, and A. Vargas. Integrated natural gas and electricity market: A survey of the state of the art in operation planning and market issues. In 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, pages 1-8. IEEE, 2008
dc.relationC. A. Saldarriaga, R. A. Hincapi´e, and H. Salazar. A holistic approach for planning natural gas and electricity distribution networks. IEEE transactions on power systems, 28(4):4052-4063, 2013.
dc.relationC. Saldarriaga-Cort´es, H. Salazar, R. Moreno, and G. Jim´enez-Est´evez. Integrated planning of electricity and natural gas systems under uncertain hydro inflows: A multi-objective approach. In 2017 IEEE Power & Energy Society General Meeting, pages 1-5. IEEE, 2017
dc.relationC. B. Sanchez, R. Bent, S. Backhaus, S. Blumsack, H. Hijazi, and P. Van Hentenryck. Convex optimization for joint expansion planning of natural gas and power systems. In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 2536-2545. IEEE, 2016.
dc.relationA. Schwele, C. Ordoudis, J. Kazempour, and P. Pinson. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In 2019 IEEE Milan PowerTech, pages 1-6. IEEE, 2019.
dc.relationC. Shao, X. Wang, M. Shahidehpour, X. Wang, and B. Wang. An milp-based optimal power flow in multicarrier energy systems. IEEE Transactions on Sustainable Energy, 8(1):239-248, 2016.
dc.relationM. K. Singh and V. Kekatos. Natural gas flow equations: Uniqueness and an mi-socp solver. In 2019 American Control Conference (ACC), pages 2114-2120. IEEE, 2019.
dc.relationM. Sterner and M. Specht. Power-to-gas and power-to-x-the history and results of developing a new storage concept. Energies, 14(20):6594, 2021.
dc.relationT. Terlouw, K. Treyer, C. Bauer, and M. Mazzotti. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environmental Science & Technology, 55(16):11397-11411, 2021.
dc.relationJ. Vandewalle, K. Bruninx, and W. Dhaeseleer. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Conversion and Management, 94:28-39, 2015.
dc.relationY. Wang, D. Zhang, S. Tao, Y. Ma, G. Zhu, and S. Wei. dena study integrated energy transition impulses to shape the energy system up to 2050 report of the results and recommended course of action. In Integrated energy transition. German energy agency, 2018.
dc.relationV. Wesselak, T. Schabbach, T. Link, and J. Fischer. Handbuch Regenerative Energietechnik. Springer, 2017.
dc.relationX. Zhang, L. Che, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah. Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp. IEEE Transactions on Sustainable Energy, 7(3):996-1004, 2016.
dc.relationX. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah. Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on power systems, 31(1):592-601, 2015.
dc.relationX. Zhao, X. Ma, B. Chen, Y. Shang, and M. Song. Challenges toward carbon neutrality in china: Strategies and countermeasures. Resources, Conservation and Recycling, 176:105959, 2022.
dc.relationY. Zou, Y. Xu, and C. Zhang. A risk-averse adaptive stochastic optimization method for transactive energy management of a multi-energy microgrid. IEEE Transactions on Sustainable Energy, 2023.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleLow carbon scheduling model for integrated electricity and natural gas systems with power to gas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución