dc.contributor | García Varela, José Alejandro | |
dc.contributor | Minniti, Dante | |
dc.contributor | Oostra Van Noppen, Benjamín | |
dc.contributor | Astrofísica | |
dc.creator | León, Benjamín | |
dc.date.accessioned | 2023-08-11T18:27:03Z | |
dc.date.accessioned | 2023-09-06T23:21:22Z | |
dc.date.available | 2023-08-11T18:27:03Z | |
dc.date.available | 2023-09-06T23:21:22Z | |
dc.date.created | 2023-08-11T18:27:03Z | |
dc.date.issued | 2023-07-14 | |
dc.identifier | http://hdl.handle.net/1992/69650 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726440 | |
dc.description.abstract | T Tauri stars are young stellar objects that exhibit a wide range of
morphological variability in their light curves, product of multiple physical
processes. Numerical features can be designed to identify the characteristics
of these brightness variations. The identification process is automatized in
the literature through the use of machine-learning algorithms.
This Master thesis aims to utilize supervised machine-learning algorithms
for morphological classification of T Tauri stars with a set of proposed fea-
tures based on segmentation strategies. The features are tested on an ex-
ternal data set for evaluation and the best parameters for classification are
discussed.
We evaluate the features through the Welch t-test, the Mann-Whitney
U-test and the Levene test for equal variance. After the testing, seven algo-
rithms are trained with light curves from the Orion star formation complex
obtained from the TESS project. The algorithms are subject to sequential
reduction of feature space, hyper parameter grid search and recurrent im-
portance calculations to optimize classification results in terms of F1 score
and Cohen kappa. The optimized algorithms are then applied to a sample
of over 2000 hand-classified confirmed T Tauri stars.
In this work, we propose 61 features based upon robust statistics, pseudo-
time-series analysis and auto-correlation measurements. These features were
utilized in 13 implementations of binary and multi-class classifiers and opti-
mized taking advantage of a high-performance cluster. We implement statis-
tical tests as feature evaluation and light curve filtering strategies innovative
to astronomical feature design. The highest achieving features on the test-
ing data set were analyzed individually and were conceptually connected to
physical processes, signal crowding and systematic effects. The algorithms
obtained F1 scores higher than 0.4 for all classes with maximum feature
dimension of 10.
This work contributes a new set of useful features that consistently
achieve high importance when compared to features used in the litera-
ture. Innovative feature design, evaluation stages and algorithm optimiza-
tion pipelines were implemented. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | Alpaydin, E. 2020. MIT press. | |
dc.relation | Andrews, D. F. and Hampel, F. R. 2015. Vol. 1280. Princeton University
Press. | |
dc.relation | Appenzeller, I. and Mundt, R. 1989. A&AR, 1.3, 291-334. | |
dc.relation | Arnold, B. C. and Groeneveld, R. A. 1995. Am Stat, 49.1, 34-38. | |
dc.relation | Balanda, K. P. and MacGillivray, H. L. 1988. Am Stat, 42.2, 111-119. | |
dc.relation | Ball, N. M., Brunner, R. J., Myers, A. D., et al. 2006. ApJ, 650.1, 497. | |
dc.relation | Barclay, T., Pepper, J., and Quintana, E.V. 2018. ApJS, 239.1, 2. | |
dc.relation | Basri, G. 1998. Brown dwarfs and extrasolar planets. Vol. 134, p. 394. | |
dc.relation | Bastian, U., Finkenzeller, U., Jaschek, C., et al. 1983. A&A, 126, 438. | |
dc.relation | Baumann, P., Ramírez, I., Meléndez, J., et al. 2010. A&A, 519, A87. | |
dc.relation | Beers, T-46. | |
dc.relation | Bertout, C. 1989. ARA&A, 27, 351-395. | |
dc.relation | Beucher, S. 1979. Proc. Int. Workshop on Image Processing, Sept. 1979,
pp. 17-21. | |
dc.relation | Bouvier, J., Chelli, A., Allain, S., et al. 1999. A&A, 349, 619-635. | |
dc.relation | Breiman, L. 2001. Mach Learn, 45, 5-32. | |
dc.relation | Briceño, C., Calvet, N., Hernández, J., et al. 2019. AJ, 157.2, 85. | |
dc.relation | Brys, G., Hubert, M., and Struyf, A. 2004. J Comput Graph Stat, 13.4, 996-1017. | |
dc.relation | Carroll, B. W. and Ostlie, D. A. 2017. Cambridge University Press. | |
dc.relation | Clarke, A. O., Scaife, A. M. M., Greenhalgh, R., et al. 2020. A&A, 639, A84. | |
dc.relation | Cody, A. M., Stauffer, J., Baglin, A., et al. 2014. AJ, 147.4, 82. | |
dc.relation | Davenport, T. H. 2018. MIT Press. | |
dc.relation | Doane, D. P. and Seward, L. E. 2011. J. Educ. Stat., 19.2. | |
dc.relation | Donati, J. F., Jardine, M. M., Gregory, S. G., et al. 2008. MNRAS, 386.3,
1234-1251. | |
dc.relation | Edwards, S., Cabrit, S., Strom, S. E., et al. 1987. ApJ, 321, 473-495. | |
dc.relation | Feast, M. W. 1962. MNRAS, 125.5, 367-415 | |
dc.relation | Flores, C., Reipurth, B., and Connelley, M. S. 2020. ApJ, 898.2, 109. | |
dc.relation | Furlan, E, KL Luhman, C Espaillat, et al. 2011. The Astrophysical Journal
Supplement Series, 195.1, 3. | |
dc.relation | Gastwirth, J. L., Gel, Y. R., and Miao, W. 2009. | |
dc.relation | Geurts, P., Ernst, D., and Wehenkel, L. 2006. Mach Learn, 63, 3-42. | |
dc.relation | Hampel, F. R. 1968. University of California, Berkeley. | |
dc.relation | Hartmann, L. 2000. Vol. 32. Cambridge University Press. | |
dc.relation | Hartmann, L., Calvet, N., Gullbring, E., et al. 1998. ApJ, 495.1, 385. | |
dc.relation | Hastie, T., Rosset, S., Zhu, J., et al. 2009. Stat Interface, 2.3, 349-360. | |
dc.relation | Herbig, G. 1962. AsA&A. Vol. 1. Elsevier, pp. 47-103. | |
dc.relation | Herbst, W. 2012. JAAVSO, 40.1, 448. | |
dc.relation | Jeffries, R.D. 2006. Chemical Abundances and Mixing in Stars in the Milky
Way and its Satellites: Proceedings of the ESO Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004. Springer, pp. 163-170 | |
dc.relation | Joy, A. H. 1945. ApJ, 102, 168. | |
dc.relation | Kenyon, S. J., Brown, D. I., Tout, C. A., et al. 1998. AJ, 115.6, 2491. | |
dc.relation | Keogh, E., Chu, S., Hart, D., et al. 2004. Data mining in time series databases.World Scientific, pp. 1-21. | |
dc.relation | Kounkel, M., Covey, K., Su árez, G., et al. 2018. AJ, 156.3, 84. | |
dc.relation | Kunimoto, M., Huang, C., Tey, E., et al. 2021. RNAAS, 5.10, 234. | |
dc.relation | León, B. 2020. Undergraduate Physics thesis. | |
dc.relation | Leung, H. W. and Bovy, J. 2019. MNRAS, 483.3, 3255-3277. | |
dc.relation | Leys, C., Ley, C., Klein, O., et al. 2013. J Exp Soc Psychol, 49.4, 764-766. | |
dc.relation | Lovric, M., Milanovic, M., and Stamenkovi c, M. 2014. J Bus Econ Stat, 1.1,
31-53. | |
dc.relation | MacFarland, T. W. and Yates, J. M. 2016. Introduction to nonparametric statistics for the biological sciences using R, 103-132. | |
dc.relation | Mann, H. B. and Whitney, D. R. 1947. Ann. Math. Stat., 50-60. | |
dc.relation | Massart, D. L., Kaufman, L., Rousseeuw, P. J., et al. 1986. Analytica Chim-
ica Acta, 187, 171-179. | |
dc.relation | McKnight, P. E. and Najab, J. 2010. The Corsini encyclopedia of psychology,
1-1. | |
dc.relation | Minniti, D, PW Lucas, JP Emerson, et al. 2010. New Astronomy, 15.5, 433-443. | |
dc.relation | Newcombe, R. G. 2006. Stat. Med., 25.4, 543-557. | |
dc.relation | Nuzzo, R. 2014. Nature, 506.7487, 150. | |
dc.relation | Pashchenko, I. N., Sokolovsky, K. V., and Gavras, P. 2018. MNRAS, 475.2,
2326-2343. | |
dc.relation | Pearson, K. 1895. Proc. R. Soc. Lond., 58.347-352, 240-242. | |
dc.relation | Percival, D. B., Walden, A. T., et al. 1993. Cambridge University Press. | |
dc.relation | Rasch, D., Kubinger, K. D., Moder, K., et al. 2011. Statistical papers, 52.1,
219. | |
dc.relation | Rodríguez, B., Serna, J., García, A., et al. 2023. Submitted to ApJ. | |
dc.relation | Roerdink, J. BTM and Meijster, A. 2000. Fundam. Inform., 41.1-2, 187-228. | |
dc.relation | Rousseeuw, P and Hubert, M. 2011. Wiley interdisciplinary reviews: Data
mining and knowledge discovery, 1.1, 73-79. | |
dc.relation | Sabogal, B. E., García-Varela, A., and Mennickent, R. E. 2014. PASP,
126.937, 219. | |
dc.relation | Sakoe, H. and Chiba, S. 1978. IEEE Trans. Signal Process., 26.1, 43-49. | |
dc.relation | Savitzky, A. and Golay, M. J. E. 1964. Analytical chemistry, 36.8, 1627-1639. | |
dc.relation | Scargle, J. D. 1982. ApJ, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263,
835-853. | |
dc.relation | Schober, P., Boer, C., and Schwarte, L. A. 2018. Anesth. Analg., 126.5, 1763-1768. | |
dc.relation | Scholkmann, F., Boss, J., and Wolf, M. 2012. Algorithms, 5.4, 588-603. | |
dc.relation | Serna, J., Hernandez, J., Kounkel, M., et al. 2021. ApJ, 923.2, 177. | |
dc.relation | Skumanich, A. 1972. ApJ, 171, 565. | |
dc.relation | Stauffer, J., Cody, A. M., Baglin, A., et al. 2014. AJ, 147.4, 83. | |
dc.relation | Stauffer, J., Cody, A. M., McGinnis, P., et al. 2015. AJ, 149.4, 130. | |
dc.relation | Stetson, P. B. 1996. PASP, 108.728, 851. | |
dc.relation | Student. 1908. Biometrika, 6.1, 1-25. | |
dc.relation | Taha, Abdel Aziz and Allan Hanbury. 2015. BMC medical imaging, 15.1,
1-28. | |
dc.relation | Tajiri, T., Kawahara, H, Aizawa, M., et al. 2020. ApJSS, 251.2, 18. | |
dc.relation | Taylor, R. 1990. J Diagn Med Sonogr, 6.1, 35-39. | |
dc.relation | VanderPlas, J. T. 2018. ApJSS, 236.1, 16. | |
dc.relation | Von Neumann, J. 1941. Ann. Math. Stat., 12.4, 367-395. | |
dc.relation | Walter, F. M. 1986. ApJ, 306, 573-586. | |
dc.relation | Walter, F. M., Brown, A., Linsky, J. L., et al. 1987. ApJ, 314, 297-307. | |
dc.relation | Walter, F. M., Brown, A., Mathieu, R. D., et al. 1988. AJ, 96, 297-325. | |
dc.relation | Westfall, P. H. 2014. Am Stat, 68.3, 191-195. | |
dc.relation | Witte, R. S. and Witte, J. S. 2017. John Wiley & Sons. | |
dc.relation | Yuen, K. K. 1974. Biometrika, 61.1, 165-170. | |
dc.relation | Zimmerman, D.W. 2004. Br J Math Stat Psychol, 57.1, 173-181. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Segment-based feature proposal for the morphological classification of T Tauri star light curves | |
dc.type | Trabajo de grado - Maestría | |