dc.contributorGarcía Varela, José Alejandro
dc.contributorMinniti, Dante
dc.contributorOostra Van Noppen, Benjamín
dc.contributorAstrofísica
dc.creatorLeón, Benjamín
dc.date.accessioned2023-08-11T18:27:03Z
dc.date.accessioned2023-09-06T23:21:22Z
dc.date.available2023-08-11T18:27:03Z
dc.date.available2023-09-06T23:21:22Z
dc.date.created2023-08-11T18:27:03Z
dc.date.issued2023-07-14
dc.identifierhttp://hdl.handle.net/1992/69650
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726440
dc.description.abstractT Tauri stars are young stellar objects that exhibit a wide range of morphological variability in their light curves, product of multiple physical processes. Numerical features can be designed to identify the characteristics of these brightness variations. The identification process is automatized in the literature through the use of machine-learning algorithms. This Master thesis aims to utilize supervised machine-learning algorithms for morphological classification of T Tauri stars with a set of proposed fea- tures based on segmentation strategies. The features are tested on an ex- ternal data set for evaluation and the best parameters for classification are discussed. We evaluate the features through the Welch t-test, the Mann-Whitney U-test and the Levene test for equal variance. After the testing, seven algo- rithms are trained with light curves from the Orion star formation complex obtained from the TESS project. The algorithms are subject to sequential reduction of feature space, hyper parameter grid search and recurrent im- portance calculations to optimize classification results in terms of F1 score and Cohen kappa. The optimized algorithms are then applied to a sample of over 2000 hand-classified confirmed T Tauri stars. In this work, we propose 61 features based upon robust statistics, pseudo- time-series analysis and auto-correlation measurements. These features were utilized in 13 implementations of binary and multi-class classifiers and opti- mized taking advantage of a high-performance cluster. We implement statis- tical tests as feature evaluation and light curve filtering strategies innovative to astronomical feature design. The highest achieving features on the test- ing data set were analyzed individually and were conceptually connected to physical processes, signal crowding and systematic effects. The algorithms obtained F1 scores higher than 0.4 for all classes with maximum feature dimension of 10. This work contributes a new set of useful features that consistently achieve high importance when compared to features used in the litera- ture. Innovative feature design, evaluation stages and algorithm optimiza- tion pipelines were implemented.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias - Física
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationAlpaydin, E. 2020. MIT press.
dc.relationAndrews, D. F. and Hampel, F. R. 2015. Vol. 1280. Princeton University Press.
dc.relationAppenzeller, I. and Mundt, R. 1989. A&AR, 1.3, 291-334.
dc.relationArnold, B. C. and Groeneveld, R. A. 1995. Am Stat, 49.1, 34-38.
dc.relationBalanda, K. P. and MacGillivray, H. L. 1988. Am Stat, 42.2, 111-119.
dc.relationBall, N. M., Brunner, R. J., Myers, A. D., et al. 2006. ApJ, 650.1, 497.
dc.relationBarclay, T., Pepper, J., and Quintana, E.V. 2018. ApJS, 239.1, 2.
dc.relationBasri, G. 1998. Brown dwarfs and extrasolar planets. Vol. 134, p. 394.
dc.relationBastian, U., Finkenzeller, U., Jaschek, C., et al. 1983. A&A, 126, 438.
dc.relationBaumann, P., Ramírez, I., Meléndez, J., et al. 2010. A&A, 519, A87.
dc.relationBeers, T-46.
dc.relationBertout, C. 1989. ARA&A, 27, 351-395.
dc.relationBeucher, S. 1979. Proc. Int. Workshop on Image Processing, Sept. 1979, pp. 17-21.
dc.relationBouvier, J., Chelli, A., Allain, S., et al. 1999. A&A, 349, 619-635.
dc.relationBreiman, L. 2001. Mach Learn, 45, 5-32.
dc.relationBriceño, C., Calvet, N., Hernández, J., et al. 2019. AJ, 157.2, 85.
dc.relationBrys, G., Hubert, M., and Struyf, A. 2004. J Comput Graph Stat, 13.4, 996-1017.
dc.relationCarroll, B. W. and Ostlie, D. A. 2017. Cambridge University Press.
dc.relationClarke, A. O., Scaife, A. M. M., Greenhalgh, R., et al. 2020. A&A, 639, A84.
dc.relationCody, A. M., Stauffer, J., Baglin, A., et al. 2014. AJ, 147.4, 82.
dc.relationDavenport, T. H. 2018. MIT Press.
dc.relationDoane, D. P. and Seward, L. E. 2011. J. Educ. Stat., 19.2.
dc.relationDonati, J. F., Jardine, M. M., Gregory, S. G., et al. 2008. MNRAS, 386.3, 1234-1251.
dc.relationEdwards, S., Cabrit, S., Strom, S. E., et al. 1987. ApJ, 321, 473-495.
dc.relationFeast, M. W. 1962. MNRAS, 125.5, 367-415
dc.relationFlores, C., Reipurth, B., and Connelley, M. S. 2020. ApJ, 898.2, 109.
dc.relationFurlan, E, KL Luhman, C Espaillat, et al. 2011. The Astrophysical Journal Supplement Series, 195.1, 3.
dc.relationGastwirth, J. L., Gel, Y. R., and Miao, W. 2009.
dc.relationGeurts, P., Ernst, D., and Wehenkel, L. 2006. Mach Learn, 63, 3-42.
dc.relationHampel, F. R. 1968. University of California, Berkeley.
dc.relationHartmann, L. 2000. Vol. 32. Cambridge University Press.
dc.relationHartmann, L., Calvet, N., Gullbring, E., et al. 1998. ApJ, 495.1, 385.
dc.relationHastie, T., Rosset, S., Zhu, J., et al. 2009. Stat Interface, 2.3, 349-360.
dc.relationHerbig, G. 1962. AsA&A. Vol. 1. Elsevier, pp. 47-103.
dc.relationHerbst, W. 2012. JAAVSO, 40.1, 448.
dc.relationJeffries, R.D. 2006. Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites: Proceedings of the ESO Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004. Springer, pp. 163-170
dc.relationJoy, A. H. 1945. ApJ, 102, 168.
dc.relationKenyon, S. J., Brown, D. I., Tout, C. A., et al. 1998. AJ, 115.6, 2491.
dc.relationKeogh, E., Chu, S., Hart, D., et al. 2004. Data mining in time series databases.World Scientific, pp. 1-21.
dc.relationKounkel, M., Covey, K., Su árez, G., et al. 2018. AJ, 156.3, 84.
dc.relationKunimoto, M., Huang, C., Tey, E., et al. 2021. RNAAS, 5.10, 234.
dc.relationLeón, B. 2020. Undergraduate Physics thesis.
dc.relationLeung, H. W. and Bovy, J. 2019. MNRAS, 483.3, 3255-3277.
dc.relationLeys, C., Ley, C., Klein, O., et al. 2013. J Exp Soc Psychol, 49.4, 764-766.
dc.relationLovric, M., Milanovic, M., and Stamenkovi c, M. 2014. J Bus Econ Stat, 1.1, 31-53.
dc.relationMacFarland, T. W. and Yates, J. M. 2016. Introduction to nonparametric statistics for the biological sciences using R, 103-132.
dc.relationMann, H. B. and Whitney, D. R. 1947. Ann. Math. Stat., 50-60.
dc.relationMassart, D. L., Kaufman, L., Rousseeuw, P. J., et al. 1986. Analytica Chim- ica Acta, 187, 171-179.
dc.relationMcKnight, P. E. and Najab, J. 2010. The Corsini encyclopedia of psychology, 1-1.
dc.relationMinniti, D, PW Lucas, JP Emerson, et al. 2010. New Astronomy, 15.5, 433-443.
dc.relationNewcombe, R. G. 2006. Stat. Med., 25.4, 543-557.
dc.relationNuzzo, R. 2014. Nature, 506.7487, 150.
dc.relationPashchenko, I. N., Sokolovsky, K. V., and Gavras, P. 2018. MNRAS, 475.2, 2326-2343.
dc.relationPearson, K. 1895. Proc. R. Soc. Lond., 58.347-352, 240-242.
dc.relationPercival, D. B., Walden, A. T., et al. 1993. Cambridge University Press.
dc.relationRasch, D., Kubinger, K. D., Moder, K., et al. 2011. Statistical papers, 52.1, 219.
dc.relationRodríguez, B., Serna, J., García, A., et al. 2023. Submitted to ApJ.
dc.relationRoerdink, J. BTM and Meijster, A. 2000. Fundam. Inform., 41.1-2, 187-228.
dc.relationRousseeuw, P and Hubert, M. 2011. Wiley interdisciplinary reviews: Data mining and knowledge discovery, 1.1, 73-79.
dc.relationSabogal, B. E., García-Varela, A., and Mennickent, R. E. 2014. PASP, 126.937, 219.
dc.relationSakoe, H. and Chiba, S. 1978. IEEE Trans. Signal Process., 26.1, 43-49.
dc.relationSavitzky, A. and Golay, M. J. E. 1964. Analytical chemistry, 36.8, 1627-1639.
dc.relationScargle, J. D. 1982. ApJ, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263, 835-853.
dc.relationSchober, P., Boer, C., and Schwarte, L. A. 2018. Anesth. Analg., 126.5, 1763-1768.
dc.relationScholkmann, F., Boss, J., and Wolf, M. 2012. Algorithms, 5.4, 588-603.
dc.relationSerna, J., Hernandez, J., Kounkel, M., et al. 2021. ApJ, 923.2, 177.
dc.relationSkumanich, A. 1972. ApJ, 171, 565.
dc.relationStauffer, J., Cody, A. M., Baglin, A., et al. 2014. AJ, 147.4, 83.
dc.relationStauffer, J., Cody, A. M., McGinnis, P., et al. 2015. AJ, 149.4, 130.
dc.relationStetson, P. B. 1996. PASP, 108.728, 851.
dc.relationStudent. 1908. Biometrika, 6.1, 1-25.
dc.relationTaha, Abdel Aziz and Allan Hanbury. 2015. BMC medical imaging, 15.1, 1-28.
dc.relationTajiri, T., Kawahara, H, Aizawa, M., et al. 2020. ApJSS, 251.2, 18.
dc.relationTaylor, R. 1990. J Diagn Med Sonogr, 6.1, 35-39.
dc.relationVanderPlas, J. T. 2018. ApJSS, 236.1, 16.
dc.relationVon Neumann, J. 1941. Ann. Math. Stat., 12.4, 367-395.
dc.relationWalter, F. M. 1986. ApJ, 306, 573-586.
dc.relationWalter, F. M., Brown, A., Linsky, J. L., et al. 1987. ApJ, 314, 297-307.
dc.relationWalter, F. M., Brown, A., Mathieu, R. D., et al. 1988. AJ, 96, 297-325.
dc.relationWestfall, P. H. 2014. Am Stat, 68.3, 191-195.
dc.relationWitte, R. S. and Witte, J. S. 2017. John Wiley & Sons.
dc.relationYuen, K. K. 1974. Biometrika, 61.1, 165-170.
dc.relationZimmerman, D.W. 2004. Br J Math Stat Psychol, 57.1, 173-181.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSegment-based feature proposal for the morphological classification of T Tauri star light curves
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución