dc.contributorPorras Holguín, Niyireth Alicia
dc.contributorHernández Carrión, María
dc.contributorÁlvarez Solano, Óscar Alberto
dc.contributorGarcía Mora, Ángela María
dc.contributorGrupo de Diseño de Productos y Procesos (GDPP)
dc.creatorHozman Manrique, Ana Sofía
dc.date.accessioned2023-06-20T14:34:47Z
dc.date.accessioned2023-09-06T23:18:09Z
dc.date.available2023-06-20T14:34:47Z
dc.date.available2023-09-06T23:18:09Z
dc.date.created2023-06-20T14:34:47Z
dc.date.issued2023-06-02
dc.identifierhttp://hdl.handle.net/1992/67692
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726395
dc.description.abstractThis document presents the procedure for the extraction of cellulose microfibers from cocoa pod husk. Then, the incorporation of cellulose microfibers in polymeric matrices is shown and its characterization is performed. Finally, a preliminary design of a multilayer active packaging from a barrier film and an active film is presented for its possible application in active packaging.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationP. K. Sadh, S. Duhan, and J. S. Duhan, Agro-industrial wastes and their utilization using solid state fermentation: a review, Bioresour Bioprocess, vol. 5, no. 1, pp. 1-15, Dec. 2018, doi: 10.1186/S40643- 017-0187-Z/FIGURES/4.
dc.relationS. Y. Cheng et al., Incorporating biowaste into circular bioeconomy: A critical review of current trend and scaling up feasibility, Environ Technol Innov, vol. 19, p. 101034, Aug. 2020, doi: 10.1016/J.ETI.2020.101034.
dc.relationL. F. Ballesteros, M. Michelin, A. A. Vicente, J. A. Teixeira, and M. Â. Cerqueira, Lignocellulosic Materials: Sources and Processing Technologies, pp. 13-33, 2018, doi: 10.1007/978-3-319-92940-8_2.
dc.relationM. P. Westman, S. G. Laddha, L. S. Fifield, T. A. Kafentzis, and K. L. Simmons, Natural Fiber Composites: A Review, 2010, Accessed: Sep. 28, 2022. [Online]. Available: http://www.ntis.gov/ordering.htm
dc.relationL. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int J Polym Sci, vol. 2015, 2015, doi: 10.1155/2015/243947.
dc.relationK. Oksman, M. Skrifvars, and J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos Sci Technol, vol. 63, no. 9, pp. 1317-1324, Jul. 2003, doi: 10.1016/S0266- 3538(03)00103-9.
dc.relationH. P. S. Abdul Khalil et al., Nanofibrillated cellulose reinforcement in thermoset polymer composites, Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications, pp. 1-24, Jan. 2017, doi: 10.1016/B978-0-08-100957-4.00001-2.
dc.relationA. Kataria et al., Cellulose fiber-reinforced composites-History of evolution, chemistry, and structure, 2023, doi: 10.1016/B978-0-323-90125-3.00012-4.
dc.relationR. Campos-Vega, K. H. Nieto-Figueroa, and B. D. Oomah, Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds, Trends Food Sci Technol, vol. 81, pp. 172-184, Nov. 2018, doi: 10.1016/J.TIFS.2018.09.022.
dc.relationA. Herrera-Barrios, J. Puello-Mendez, J. C. Pasqualino, and H. A. Lambis-Miranda, Agro-Industrial Waste from Cocoa Pod Husk (Theobroma cacao L.), as a Potential Raw Material for Preparation of Cellulose Nanocrys, Chem Eng Trans, vol. 92, 2022, doi: 10.3303/CET2292035.
dc.relationMashuni et al., The determination of total phenolic content of cocoa pod husk based on microwave- assisted extraction method, AIP Conf Proc, vol. 2243, no. 1, p. 030013, Jun. 2020, doi: 10.1063/5.0001364.
dc.relationF. A. Syamani, Y. D. Kurniawan, and L. Suryanegara, CELLULOSE FIBERS FROM OIL PALM FRONDS REINFORCED POLYLACTIC ACID COMPOSITE, Adopted from MEV Journal, 2012, Accessed: May 17, 2023. [Online]. Available: www.mevjournal.com
dc.relationM. H. Rahman and P. R. Bhoi, An overview of non-biodegradable bioplastics, J Clean Prod, vol. 294, p. 126218, Apr. 2021, doi: 10.1016/J.JCLEPRO.2021.126218.
dc.relationS. Dehghani, S. V. Hosseini, and J. M. Regenstein, Edible films and coatings in seafood preservation: A review, Food Chem, vol. 240, pp. 505-513, Feb. 2018, doi: 10.1016/J.FOODCHEM.2017.07.034.
dc.relationAbdullah et al., Biopolymer-based functional films for packaging applications: A review, Front Nutr, vol. 9, p. 1956, Aug. 2022, doi: 10.3389/FNUT.2022.1000116/BIBTEX.
dc.relationS. Yildirim et al., Active Packaging Applications for Food, Compr Rev Food Sci Food Saf, vol. 17, no. 1, pp. 165-199, Jan. 2018, doi: 10.1111/1541-4337.12322.
dc.relationL. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, and J. Debevere, Developments in the active packaging of foods, Trends Food Sci Technol, vol. 10, no. 3, pp. 77-86, Mar. 1999, doi: 10.1016/S0924-2244(99)00032-1.
dc.relationJ. R. Westlake, M. W. Tran, Y. Jiang, X. Zhang, A. D. Burrows, and M. Xie, Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects, vol. 2, pp. 1166-1183, 2022, doi: 10.1021/acsfoodscitech.2c00070.
dc.relationC. Vilela et al., A concise guide to active agents for active food packaging, Trends Food Sci Technol, vol. 80, pp. 212-222, Oct. 2018, doi: 10.1016/J.TIFS.2018.08.006.
dc.relationR. Vanitha and C. Kavitha, Development of natural cellulose fiber and its food packaging application, Mater Today Proc, vol. 36, pp. 903-906, Jan. 2021, doi: 10.1016/J.MATPR.2020.07.029.
dc.relationS. Ranjbaryan, B. Pourfathi, and H. Almasi, Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil, Food Packag Shelf Life, vol. 21, p. 100341, Sep. 2019, doi: 10.1016/J.FPSL.2019.100341.
dc.relationJ. Wu et al., The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes, Food Hydrocoll, vol. 43, pp. 427-435, Jan. 2015, doi: 10.1016/J.FOODHYD.2014.06.017.
dc.relationI. Arcan and A. Yemenicioglu, Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds, J Agric Food Chem, vol. 62, no. 32, pp. 8238-8246, Aug. 2014, doi: 10.1021/JF500666W/SUPPL_FILE/JF500666W_SI_001.PDF.
dc.relationH. Esmaeili et al., Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages, Meat Sci, vol. 166, p. 108135, Aug. 2020, doi: 10.1016/J.MEATSCI.2020.108135.
dc.relationC. J. KIRBY, C. J. WHITTLE, N. RIGBY, D. T. COXON, and B. A. LAW, Stabilization of ascorbic acid by microencapsulation in liposomes, Int J Food Sci Technol, vol. 26, no. 5, pp. 437-449, Oct. 1991, doi: 10.1111/J.1365-2621.1991.TB01988.X.
dc.relationN. Monteiro, A. Martins, R. L. Reis, and N. M. Neves, Liposomes in tissue engineering and regenerative medicine, J R Soc Interface, vol. 11, no. 101, Dec. 2014, doi: 10.1098/RSIF.2014.0459.
dc.relationH. Yilmaz Atay, Antibacterial Activity of Chitosan-Based Systems, Functional Chitosan, p. 457, Jan. 2020, doi: 10.1007/978-981-15-0263-7_15.
dc.relationF. Beltrán-Ramírez et al., Agro-Industrial Waste Revalorization: The Growing Biorefinery, Biomass for Bio-energy - Recent Trends and Future Challenges, Mar. 2019, doi: 10.5772/INTECHOPEN.83569.
dc.relationS. M. el Haggar, Rural and Developing Country Solutions, Environmental Solutions: Environmental Problems and the All-inclusive global, scientific, political, legal, economic, medical, and engineering bases to solve them, pp. 313-400, Jan. 2005, doi: 10.1016/B978-012088441-4/50015-0.
dc.relationE. Colombia, L. Victoria, P. Gonzalez, S. P. Montenegro Gómez, P. Andrea, and G. Abad, Aprovechamiento de residuos agroindustriales en Colombia, Revista de Investigación Agraria y Ambiental, vol. 8, no. 2, pp. 141-150, Jun. 2017, doi: 10.22490/21456453.2040.
dc.relationR. Singh, V. Kapoor, and V. Kumar, Utilization of Agro-industrial Wastes for the Simultaneous Production of Amylase and Xylanase by Thermophilic Actinomycetes, Braz J Microbiol, vol. 43, no. 4, pp. 1545-1552, Oct. 2012, doi: 10.1590/S1517-838220120004000039.
dc.relationJ. Pérez, J. Muñoz-Dorado, T. de La Rubia, and J. Martínez, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview, Int Microbiol, vol. 5, no. 2, pp. 53-63, 2002, doi: 10.1007/S10123-002-0062-3.
dc.relationN. v. Maheshwari, Agro-industrial lignocellulosic waste: An alternative to unravel the future bioenergy, Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology, pp. 291-305, Feb. 2018, doi: 10.1007/978-81-322-3763-1_16/COVER.
dc.relationK. Cury, Y. Aguas, A. Martinez, R. Olivero, and L. Chams, Residuos agroindustriales su impacto, manejo y aprovechamiento, Revista Colombiana de Ciencia Animal - RECIA, vol. 9, no. S1, pp. 122-132, May 2017, doi: 10.24188/RECIA.V9.NS.2017.530.
dc.relationE. Bonnin, M. C. Ralet, J. F. Thibault, and H. A. Schols, Enzymes for the valorisation of fruit- and vegeta-ble-based co-products, Handbook of Waste Management and Co-Product Recovery in Food Processing, vol. 2, pp. 257-285, Jan. 2009, doi: 10.1533/9781845697051.3.257.
dc.relationB. Akash, Thermochemical Depolymerization of Biomass, Procedia Comput Sci, vol. 52, no. 1, pp. 827-834, Jan. 2015, doi: 10.1016/J.PROCS.2015.05.139.
dc.relationL. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int J Polym Sci, vol. 2015, 2015, doi: 10.1155/2015/243947.
dc.relationM. P. Westman, S. G. Laddha, L. S. Fifield, T. A. Kafentzis, and K. L. Simmons, Natural Fiber Composites: A Review, 2010, Accessed: Sep. 28, 2022. [Online]. Available: http://www.ntis.gov/ordering.htm
dc.relationS. Venkatarajan and A. Athijayamani, An overview on natural cellulose fiber reinforced polymer composites, Mater Today Proc, vol. 37, no. Part 2, pp. 3620-3624, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.773.
dc.relationK. Oksman, M. Skrifvars, and J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos Sci Technol, vol. 63, no. 9, pp. 1317-1324, Jul. 2003, doi: 10.1016/S0266-3538(03)00103-9.
dc.relationQ. Zhang, L. Shi, J. Nie, H. Wang, and D. Yang, Study on poly(lactic acid)/natural fibers composites, J Appl Polym Sci, vol. 125, no. S2, pp. E526-E533, Sep. 2012, doi: 10.1002/APP.36852.
dc.relationM. Idicula, A. Boudenne, L. Umadevi, L. Ibos, Y. Candau, and S. Thomas, Thermophysical properties of natural fibre reinforced polyester composites, Compos Sci Technol, vol. 66, no. 15, pp. 2719-2725, Dec. 2006, doi: 10.1016/J.COMPSCITECH.2006.03.007.
dc.relationR. Ranjan, P. K. Bajpai, and R. K. Tyagi, Mechanical Characterization of Banana/Sisal Fibre Reinforced PLA Hybrid Composites for Structural Application, Engineering International, vol. 1, no. 1, pp. 39-48, Jun. 2013, doi: 10.18034/ei.v1i1.216.
dc.relationH. P. S. Abdul Khalil et al., Nanofibrillated cellulose reinforcement in thermoset polymer composites, Cel-lulose-Reinforced Nanofibre Composites: Production, Properties and Applications, pp. 1-24, Jan. 2017, doi: 10.1016/B978-0-08-100957-4.00001-2.
dc.relationO. O. Ortiz-R, R. A. V. Gallardo, and J. M. Rangel, Applying life cycle management of colombian cocoa production, Food Science and Technology, vol. 34, no. 1, pp. 62-68, 2014, doi: 10.1590/S0101- 20612014005000006.
dc.relationR. Campos-Vega, K. H. Nieto-Figueroa, and B. D. Oomah, Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds, Trends Food Sci Technol, vol. 81, pp. 172-184, Nov. 2018, doi: 10.1016/J.TIFS.2018.09.022.
dc.relationF. Lu et al., Valorisation strategies for cocoa pod husk and its fractions, Curr Opin Green Sustain Chem, vol. 14, pp. 80-88, Dec. 2018, doi: 10.1016/J.COGSC.2018.07.007.
dc.relationF. L. Pua, M. S. Sajab, C. H. Chia, S. Zakaria, I. A. Rahman, and M. S. Salit, Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions, J Environ Chem Eng, vol. 1, no. 3, pp. 460-465, Sep. 2013, doi: 10.1016/J.JECE.2013.06.012.
dc.relationJ. D. Martínez Ángel, R. A. Villamizar-Gallardo, and O. O. Ortiz, Characterization and evaluation of cocoa (Theobroma cacao L.) pod husk as a renewable energy source, Agrociencia, ISSN-e 1405- 3195, Vol. 49, No. 3, 2015, págs. 329-345, 2015, Accessed: Nov. 09, 2022. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=5303088&info=resumen&idioma=ENG
dc.relationA. Herrera-Barrios, J. Puello-Mendez, J. C. Pasqualino, and H. A. Lambis-Miranda, Agro-Industrial Waste from Cocoa Pod Husk (Theobroma cacao L.), as a Potential Raw Material for Preparation of Cellulose Nanocrys, Chem Eng Trans, vol. 92, 2022, doi: 10.3303/CET2292035.
dc.relationMashuni et al., The determination of total phenolic content of cocoa pod husk based on microwave- assisted extraction method, AIP Conf Proc, vol. 2243, no. 1, p. 030013, Jun. 2020, doi: 10.1063/5.0001364.
dc.relationG. Zhao, X. Lyu, J. Lee, X. Cui, and W. N. Chen, Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application, Food Packag Shelf Life, vol. 21, p. 100345, Sep. 2019, doi: 10.1016/J.FPSL.2019.100345.
dc.relationB. Tajeddin, Cellulose-Based Polymers for Packaging Applications, Lignocellulosic Polymer Composites: Pro-cessing, Characterization, and Properties, vol. 9781118773574, pp. 477-498, Nov. 2014, doi: 10.1002/9781118773949.CH21.
dc.relationM. Ilangovan, V. Guna, B. Prajwal, Q. Jiang, and N. Reddy, Extraction and characterisation of natural cellulose fibers from Kigelia africana, Carbohydr Polym, vol. 236, p. 115996, May 2020, doi: 10.1016/J.CARBPOL.2020.115996.
dc.relationA. I. Akinjokun, L. F. Petrik, A. O. Ogunfowokan, J. Ajao, and T. V. Ojumu, Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes, Heliyon, vol. 7, no. 4, p. e06680, Apr. 2021, doi: 10.1016/J.HELIYON.2021.E06680.
dc.relationD. N. Jimat, W. W. A. W. Salim, A. Avicenna, and I. S. A. Zailani, Extraction of microcrystalline cellulose (mcc) from cocoa pod husk via alkaline pretreatment combined with ultrasonication, undefined, 2016.
dc.relationB. M. Cherian, L. A. Pothan, T. Nguyen-Chung, G. Mennig, M. Kottaisamy, and S. Thomas, A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization, J Agric Food Chem, vol. 56, no. 14, pp. 5617-5627, Jul. 2008, doi: 10.1021/JF8003674.
dc.relationL. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Textile Research Journal, vol. 29, no. 10, pp. 786-794, 1959, doi: 10.1177/004051755902901003.
dc.relationA. Heredia, A. Jiménez, and R. Guillén, Composition of plant cell walls, Zeitschrift für Lebensmit- tel-Untersuchung und Forschung 1995 200:1, vol. 200, no. 1, pp. 24-31, Jan. 1995, doi: 10.1007/BF01192903.
dc.relationB. S. Kaith, H. Mittal, R. Jindal, M. Maiti, and S. Kalia, Environment Benevolent Biodegradable Polymers: Synthesis, Biodegradability, and Applications, Cellulose Fibers: Bio- and Nano-Polymer Composites, pp. 425-451, 2011, doi: 10.1007/978-3-642-17370-7_16.
dc.relationX. Qiu and S. Hu, Smart' Materials Based on Cellulose: A Review of the Preparations, Properties, and Ap-plications, Materials, vol. 6, no. 3, p. 738, 2013, doi: 10.3390/MA6030738.
dc.relationI. Spiridon and V. I. Popa, Hemicelluloses: Major Sources, Properties and Applications, Monomers, Polymers and Composites from Renewable Resources, pp. 289-304, Jan. 2008, doi: 10.1016/B978-0-08- 045316-3.00013-2.
dc.relationJ. Baruah et al., Recent trends in the pretreatment of lignocellulosic biomass for value-added products, Front Energy Res, vol. 6, no. DEC, p. 141, Dec. 2018, doi: 10.3389/FENRG.2018.00141/BIBTEX.
dc.relationO. S. Samuel, A. M. Adefusika, O. S. Samuel, and A. M. Adefusika, Influence of Size Classifications on the Structural and Solid-State Characterization of Cellulose Materials, Cellulose, Sep. 2019, doi: 10.5772/INTECHOPEN.82849.
dc.relationF. J. Ruiz-Dueñas and Á. T. Martínez, Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this, Microb Biotechnol, vol. 2, no. 2, pp. 164-177, Mar. 2009, doi: 10.1111/J.1751-7915.2008.00078.X.
dc.relationM. Kiaei, B. Kord, and R. Vaysi, Influence of residual lignin content on physical and mechanical properties of kraft pulp/pp composites, Maderas. Ciencia y tecnología, vol. 16, no. 4, pp. 495-503, 2014, doi: 10.4067/S0718-221X2014005000040.
dc.relationT. Masri, H. Ounis, A. Benchabane, and L. Sedira, Effect of Lignin on the Mechanical Properties of a Composite Material Based on Date Palm Leaflets and Expanded Polystyrene Wastes, TECNICA ITALIANA-Italian Journal of Engineering Science, vol. 63, no. 2-4, pp. 393-396, Jun. 2019, doi: 10.18280/TI-IJES.632-440.
dc.relationL. C. Vriesmann, R. D. de Mello Castanho Amboni, and C. L. de Oliveira Petkowicz, Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins, Ind Crops Prod, vol. 34, no. 1, pp. 1173-1181, Jul. 2011, doi: 10.1016/J.INDCROP.2011.04.004.
dc.relationL. Porto de Souza Vandenberghe et al., Added-value biomolecules' production from cocoa pod husks: A review, Bioresour Technol, vol. 344, p. 126252, Jan. 2022, doi: 10.1016/J.BIORTECH.2021.126252.
dc.relationD. Verma and P. C. Gope, The use of coir/coconut fibers as reinforcements in composites, Biofiber Rein-forcements in Composite Materials, pp. 285-319, 2015, doi: 10.1533/9781782421276.3.285.
dc.relationD. G. Devadiga, K. S. Bhat, and G. T. Mahesha, Sugarcane bagasse fiber reinforced composites: Recent advances and applications, http://www.editorialmanager.com/cogenteng, vol. 7, no. 1, Jan. 2020, doi: 10.1080/23311916.2020.1823159.
dc.relationT. Puspaningrum, Y. H. Haris, I. Sailah, M. Yani, and N. S. Indrasti, Physical and mechanical properties of binderless medium density fiberboard (MDF) from coconut fiber, IOP Conf Ser Earth Environ Sci, vol. 472, no. 1, p. 012011, Apr. 2020, doi: 10.1088/1755-1315/472/1/012011.
dc.relationM. A. Mahmud and F. R. Anannya, Sugarcane bagasse - A source of cellulosic fiber for diverse applications, Heliyon, vol. 7, no. 8, p. e07771, Aug. 2021, doi: 10.1016/J.HELIYON.2021.E07771.
dc.relationT. Í. S. Oliveira et al., Optimization of pectin extraction from banana peels with citric acid by using response surface methodology, Food Chem, vol. 198, pp. 113-118, May 2016, doi: 10.1016/J.FOODCHEM.2015.08.080.
dc.relationM. S. Yeasmin and M. I. H. Mondal, Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size, Int J Biol Macromol, vol. 80, pp. 725-731, Sep. 2015, doi: 10.1016/J.IJBIOMAC.2015.07.040.
dc.relationA. Ma'Ruf, B. Pramudono, and N. Aryanti, Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted, AIP Conf Proc, vol. 1823, no. 1, p. 020013, Mar. 2017, doi: 10.1063/1.4978086.
dc.relationA. J. Garcia-Brand et al., Bioactive Poly(lactic acid) Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization, Polymers 2021, Vol. 13, Page 3707, vol. 13, no. 21, p. 3707, Oct. 2021, doi: 10.3390/POLYM13213707.
dc.relationI. Bernal-Lugo, C. Jacinto-Hernandez, M. Gimeno, C. Carmina Montiel, F. Rivero-Cruz, and O. Velasco, Highly efficient single-step pretreatment to remove lignin and hemicellulose from softwood, Bioresources, vol. 14, no. 2, pp. 3567-3577, 2019, doi: 10.15376/BIORES.14.2.3567-3577.
dc.relationF. Li et al., Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine, Nano- Micro Letters 2023 15:1, vol. 15, no. 1, pp. 1-50, Jan. 2023, doi: 10.1007/S40820-022-00993-4.
dc.relationJ. Song et al., Processing bulk natural wood into a high-performance structural material, Nature 2018 554:7691, vol. 554, no. 7691, pp. 224-228, Feb. 2018, doi: 10.1038/nature25476.
dc.relationD. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, and H. Yu, Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics, Advanced Materials, vol. 33, no. 28, p. 2000619, Jul. 2021, doi: 10.1002/ADMA.202000619.
dc.relationA. C. O'Sullivan, Cellulose: the structure slowly unravels, Cellulose 1997 4:3, vol. 4, no. 3, pp. 173-207, Jun. 1997, doi: 10.1023/A:1018431705579.
dc.relationT. Huber, J. Müssig, O. Curnow, S. Pang, S. Bickerton, and M. P. Staiger, A critical review of all- cellulose composites, J Mater Sci, vol. 47, no. 3, pp. 1171-1186, Feb. 2012, doi: 10.1007/S10853-011- 5774-3.
dc.relationA. U. Buranov and G. Mazza, Lignin in straw of herbaceous crops, Ind Crops Prod, vol. 28, no. 3, pp. 237-259, Nov. 2008, doi: 10.1016/J.INDCROP.2008.03.008.
dc.relationA. A. Modenbach and S. E. Nokes, Effects of Sodium Hydroxide Pretreatment on Structural Effects of Sodium Hydroxide Pretreatment on Structural Components of Biomass Components of Biomass, 2014, doi: 10.13031/trans.57.10046.
dc.relationN. Syakilla Hassan and K. Haji Badri, Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber ARTICLES YOU MAY BE INTERESTED IN Lignin Recovery from Alkaline Hydrolysis and Glycerolysis of Oil Palm Fiber, vol. 1614, p. 20005, 2014, doi: 10.1063/1.4895236.
dc.relationZ. M. A. Bundhoo, Microwave-assisted conversion of biomass and waste materials to biofuels, Renewable and Sustainable Energy Reviews, vol. 82, pp. 1149-1177, Feb. 2018, doi: 10.1016/J.RSER.2017.09.066.
dc.relationB. Masseteau, F. Michaud, M. Irle, A. Roy, and G. Alise, An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite, Compos Part A Appl Sci Manuf, vol. 60, pp. 32-37, May 2014, doi: 10.1016/J.COMPOSITESA.2014.01.011.
dc.relationJ. Gassan and A. K. Bledzki, Effect of moisture content on the properties of silanized jute-epoxy composites, Polym Compos, vol. 18, no. 2, pp. 179-184, Apr. 1997, doi: 10.1002/PC.10272.
dc.relationM. C. Symington, W. M. Banks, O. D. West, and R. A. Pethrick, Tensile testing of cellulose based natural fibers for structural composite applications, J Compos Mater, vol. 43, no. 9, pp. 1083-1108, May 2009, doi: 10.1177/0021998308097740.
dc.relationA. Porras, A. Maranon, and I. A. Ashcroft, Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials, Compos B Eng, vol. 74, pp. 66-73, Jun. 2015, doi: 10.1016/J.COMPOSITESB.2014.12.033.
dc.relationJ. Kiefer, A. Strk, A. L. Kiefer, and H. Glade, Infrared Spectroscopic Analysis of the Inorganic Deposits from Water in Domestic and Technical Heat Exchangers, Energies 2018, Vol. 11, Page 798, vol. 11, no. 4, p. 798, Mar. 2018, doi: 10.3390/EN11040798.
dc.relationM. Ibrahim, O. Osman, and A. A. Mahmoud, Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach, J Comput Theor Nanosci, vol. 8, no. 1, pp. 117-123, Jan. 2011, doi: 10.1166/JCTN.2011.1668.
dc.relationF. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review, Appl Energy, vol. 104, pp. 801-809, Apr. 2013, doi: 10.1016/J.APENERGY.2012.12.019.
dc.relationK. Fackler, J. S. Stevanic, T. Ters, B. Hinterstoisser, M. Schwanninger, and L. Salmén, FT-IR imaging mi-croscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells, Holzforschung, vol. 65, no. 3, pp. 411-420, May 2011, doi: 10.1515/HF.2011.048/MACHINEREADABLECITATION/RIS.
dc.relationM. C. Paiva, I. Ammar, A. R. Campos, R. B. Cheikh, and A. M. Cunha, Alfa fibres: Mechanical, morphological and interfacial characterization, Compos Sci Technol, vol. 67, no. 6, pp. 1132-1138, May 2007, doi: 10.1016/J.COMPSCITECH.2006.05.019.
dc.relationK. E. Borchani, C. Carrot, and M. Jaziri, Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features, Cellulose 2015 22:3, vol. 22, no. 3, pp. 1577-1589, Feb. 2015, doi: 10.1007/S10570-015-0583-5.
dc.relationY. Seki, Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites, Materials Science and Engineering: A, vol. 508, no. 1-2, pp. 247-252, May 2009, doi: 10.1016/J.MSEA.2009.01.043.
dc.relationC. G. Boeriu, D. Bravo, R. J. A. Gosselink, and J. E. G. van Dam, Characterisation of structure- dependent functional properties of lignin with infrared spectroscopy, Ind Crops Prod, vol. 20, no. 2, pp. 205-218, Sep. 2004, doi: 10.1016/J.INDCROP.2004.04.022.
dc.relationC. M. Popescu, P. T. Larsson, N. Olaru, and C. Vasile, Spectroscopic study of acetylated kraft pulp fibers, Carbohydr Polym, vol. 88, no. 2, pp. 530-536, Apr. 2012, doi: 10.1016/J.CARBPOL.2011.12.046.
dc.relationS. Y. Oh et al., Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydr Res, vol. 340, no. 15, pp. 2376-2391, Oct. 2005, doi: 10.1016/J.CARRES.2005.08.007.
dc.relationC. M. Popescu, M. C. Popescu, G. Singurel, C. Vasile, D. S. Argyropoulos, and S. Willfor, Spectral characterization of eucalyptus wood, Appl Spectrosc, vol. 61, no. 11, pp. 1168-1177, Nov. 2007, doi: 10.1366/000370207782597076.
dc.relationF. da Zhang, C. H. Xu, M. Y. Li, X. D. Chen, Q. Zhou, and A. M. Huang, Identification of Dalbergia cochinchinensis (CITES Appendix II) from other three Dalbergia species using FT-IR and 2D correlation IR spectroscopy, Wood Sci Technol, vol. 50, no. 4, pp. 693-704, Jul. 2016, doi: 10.1007/S00226-016-0815-3.
dc.relationA. D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose 2013 21:2, vol. 21, no. 2, pp. 885-896, Aug. 2013, doi: 10.1007/S10570-013-0030-4.
dc.relationL. Sajid et al., Extraction and application of cellulose microfibers from Washingtonia palm as a reinforcement of starch film, https://doi.org/10.1177/87560879211023093, vol. 37, no. 4, pp. 529-558, Jun. 2021, doi: 10.1177/87560879211023093.
dc.relationA. Bhatnagar and M. Sain, Processing of cellulose nanofiber-reinforced composites, Journal of Reinforced Plastics and Composites, vol. 24, no. 12, pp. 1259-1268, 2005, doi: 10.1177/0731684405049864.
dc.relationC. A. Correia, L. M. de Oliveira, and T. S. Valera, The Influence of Bleached Jute Fiber Filler on the Properties of Vulcanized Natural Rubber, Materials Research, vol. 20, pp. 466-471, Oct. 2017, doi: 10.1590/1980-5373-MR-2017-0126.
dc.relationM. Teli and A. Jadhav, Effect of Mercerization on the Properties of Pandanus Odorifer Lignocellulosic Fibre, vol. 4, no. 1, pp. 7-15, doi: 10.9790/019X-04010715.
dc.relationJ. Gong, J. Li, J. Xu, Z. Xiang, and L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Adv, vol. 7, no. 53, pp. 33486-33493, Jun. 2017, doi: 10.1039/C7RA06222B.
dc.relationS. R. Djafari Petroudy, Physical and mechanical properties of natural fibers, Advanced High Strength Natural Fibre Composites in Construction, pp. 59-83, Jan. 2017, doi: 10.1016/B978-0-08- 100411-1.00003-0.
dc.relationP. Krishnaiah, C. T. Ratnam, and S. Manickam, Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments, Ultrason Sonochem, vol. 34, pp. 729-742, Jan. 2017, doi: 10.1016/J.ULTSONCH.2016.07.008.
dc.relationO. A. Adeleye et al., Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient, Materials 2022, Vol. 15, Page 5992, vol. 15, no. 17, p. 5992, Aug. 2022, doi: 10.3390/MA15175992.
dc.relationC. Uma Maheswari, K. Obi Reddy, E. Muzenda, B. R. Guduri, and A. Varada Rajulu, Extraction and char-acterization of cellulose microfibrils from agricultural residue - Cocos nucifera L., Biomass Bioenergy, vol. 46, pp. 555-563, Nov. 2012, doi: 10.1016/J.BIOMBIOE.2012.06.039.
dc.relationM. Ghaderi, M. Mousavi, H. Yousefi, and M. Labbafi, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr Polym, vol. 104, no. 1, pp. 59-65, Apr. 2014, doi: 10.1016/J.CARBPOL.2014.01.013.
dc.relationMicrofibrillated cellulose: A new material with high potential in the packaging industry - PreScouter - Custom Intelligence from a Global Network of Experts. https://www.prescouter.com/2017/11/microfibrillated-cellulose-packaging/ (accessed Oct. 03, 2022).
dc.relationW. J. Mora-Espinosa and B. A. Ramón-Valencia, Caracterización térmica, mecánica y morfológica de fibras naturales colombianas con potencial como refuerzo de biocompuestos, Rev Acad Colomb Cienc Exactas Fis Nat, vol. 41, no. 161, pp. 479-489, Oct. 2017, doi: 10.18257/RACCEFYN.525.
dc.relationF. Tomczak, T. H. D. Sydenstricker, and K. G. Satyanarayana, Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers, Compos Part A Appl Sci Manuf, vol. 38, no. 7, pp. 1710-1721, Jul. 2007, doi: 10.1016/J.COMPOSITESA.2007.02.004.
dc.relationV. Fiore, T. Scalici, and A. Valenza, Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites, Carbohydr Polym, vol. 106, no. 1, pp. 77-83, Jun. 2014, doi: 10.1016/J.CARBPOL.2014.02.016.
dc.relationE. Frollini, N. Bartolucci, L. Sisti, and A. Celli, Poly(butylene succinate) reinforced with different lignocellulosic fibers, Ind Crops Prod, vol. 45, pp. 160-169, Feb. 2013, doi: 10.1016/J.INDCROP.2012.12.013.
dc.relationK. S. Chun, S. Husseinsyah, and H. Osman, Utilization of cocoa pod husk as filler in polypropylene bio-composites, http://dx.doi.org/10.1177/0892705713513291, vol. 28, no. 11, pp. 1507-1521, Nov. 2013, doi: 10.1177/0892705713513291.
dc.relationN. Sharmin, J. T. Rosnes, L. Prabhu, U. Böcker, and M. Sivertsvik, Effect of Citric Acid Cross Linking on the Mechanical, Rheological and Barrier Properties of Chitosan, Molecules 2022, Vol. 27, Page 5118, vol. 27, no. 16, p. 5118, Aug. 2022, doi: 10.3390/MOLECULES27165118.
dc.relationN. Sharmin, I. Sone, J. L. Walsh, M. Sivertsvik, and E. N. Fernández, Effect of citric acid and plasma activated water on the functional properties of sodium alginate for potential food packaging applications, Food Packag Shelf Life, vol. 29, p. 100733, Sep. 2021, doi: 10.1016/J.FPSL.2021.100733.
dc.relationM. E. Castelló, P. S. Anbinder, J. I. Amalvy, and P. J. Peruzzo, Production and characterization of chitosan and glycerol-chitosan films, MRS Adv, vol. 3, no. 61, pp. 3601-3610, 2018, doi: 10.1557/ADV.2018.589.
dc.relationL. Zhuang, X. Zhi, B. Du, and S. Yuan, Preparation of Elastic and Antibacterial Chitosan-Citric Membranes with High Oxygen Barrier Ability by in Situ Cross-Linking, ACS Omega, vol. 5, no. 2, pp. 1086-1097, Jan. 2020, doi: 10.1021/ACSOMEGA.9B03206/ASSET/IMAGES/LARGE/AO9B03206_0005.JPEG.
dc.relationE. Alanas, Erdawati, G. Saefurahman, and A. S. B. A. Sani, Utilization of cellulose nanocrystals (CNC) as a filler for chitosan-based films for chili peppers packaging, IOP Conf Ser Earth Environ Sci, vol. 749, no. 1, May 2021, doi: 10.1088/1755-1315/749/1/012028.
dc.relationM. Ibrahim, O. Osman, and A. A. Mahmoud, Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach, J Comput Theor Nanosci, vol. 8, no. 1, pp. 117-123, Jan. 2011, doi: 10.1166/JCTN.2011.1668.
dc.relationZ. Cui, E. S. Beach, and P. T. Anastas, Modification of chitosan films with environmentally benign reagents for increased water resistance, Green Chem Lett Rev, vol. 4, no. 1, pp. 35-40, Mar. 2011, doi: 10.1080/17518253.2010.500621.
dc.relationY. Liu, X. Shen, H. Zhou, Y. Wang, and L. Deng, Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization, Appl Surf Sci, vol. 370, pp. 270-278, May 2016, doi: 10.1016/J.APSUSC.2016.02.124.
dc.relationC. M. Popescu, M. C. Popescu, G. Singurel, C. Vasile, D. S. Argyropoulos, and S. Willfor, Spectral Characterization of Eucalyptus Wood, http://dx.doi.org/10.1366/000370207782597076, vol. 61, no. 11, pp. 1168-1177, Nov. 2007, doi: 10.1366/000370207782597076.
dc.relationX. Jiang, Y. Sun, L. Liu, S. Wang, and X. Tian, Adsorption of C.I. Reactive Blue 19 from aqueous solutions by porous particles of the grafted chitosan, Chemical Engineering Journal, vol. 235, pp. 151-157, Jan. 2014, doi: 10.1016/J.CEJ.2013.09.001.
dc.relationJ. M. Joshi and V. K. Sinha, Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator, Polymer (Guildf), vol. 47, no. 6, pp. 2198-2204, Mar. 2006, doi: 10.1016/J.POLYMER.2005.11.050.
dc.relationG. Infurna, G. Cavallaro, G. Lazzara, S. Milioto, and N. T. Dintcheva, Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection, Molecules 2021, Vol. 26, Page 3468, vol. 26, no. 11, p. 3468, Jun. 2021, doi: 10.3390/MOLECULES26113468.
dc.relationZ. Dong, X. Jiang, Z. Jiang, L. Lv, and M. He, Preparation of glycerol plasticized chitosan films using AlCl3·6H2O as the solvent: optical, crystalline, mechanical and barrier properties, International Journal of Polymer Analysis and Characterization, vol. 24, no. 4, pp. 295-303, Jan. 2019, doi: 10.1080/1023666X.2019.1592928.
dc.relationL. Balau, G. Lisa, M. I. Popa, V. Tura, and V. Melnig, Physico-chemical properties of Chitosan films, Central European Journal of Chemistry, vol. 2, no. 4, pp. 638-647, 2004, doi: 10.2478/BF02482727.
dc.relationB. R. Machado et al., Bactericidal Pectin/Chitosan/Glycerol Films for Food Pack Coatings: A Critical Viewpoint, International Journal of Molecular Sciences 2020, Vol. 21, Page 8663, vol. 21, no. 22, p. 8663, Nov. 2020, doi: 10.3390/IJMS21228663.
dc.relationC. Peniche-Covas, W. Argüelles-Monal, and J. San Román, A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan, Polym Degrad Stab, vol. 39, no. 1, pp. 21-28, Jan. 1993, doi: 10.1016/0141-3910(93)90120-8.
dc.relationS. Jiang, C. Qiao, R. Liu, Q. Liu, J. Xu, and J. Yao, Structure and properties of citric acid cross-linked chitosan/poly(vinyl alcohol) composite films for food packaging applications, Carbohydr Polym, vol. 312, p. 120842, Jul. 2023, doi: 10.1016/J.CARBPOL.2023.120842.
dc.relationE. Frollini, N. Bartolucci, L. Sisti, and A. Celli, Poly(butylene succinate) reinforced with different lignocellulosic fibers, Ind Crops Prod, vol. 45, pp. 160-169, Feb. 2013, doi: 10.1016/J.INDCROP.2012.12.013.
dc.relationH. Moussout, H. Ahlafi, M. Aazza, and M. Bourakhouadar, Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis, Polym Degrad Stab, vol. 130, pp. 1-9, Aug. 2016, doi: 10.1016/J.POLYMDEGRADSTAB.2016.05.016.
dc.relationS. Pongchaiphol, T. Preechakun, M. Raita, V. Champreda, and N. Laosiripojana, Characterization of Cellulose-Chitosan-Based Materials from Different Lignocellulosic Residues Prepared by the Ethanosolv Process and Bleaching Treatment with Hydrogen Peroxide, ACS Omega, vol. 6, no. 35, pp. 22791-22802, Sep. 2021, doi: 10.1021/ACSOMEGA.1C03141/ASSET/IMAGES/MEDIUM/AO1C03141_M007.GIF.
dc.relationH. Wang, J. Qian, and F. Ding, Emerging Chitosan-Based Films for Food Packaging Applications, J Agric Food Chem, vol. 66, no. 2, pp. 395-413, Jan. 2018, doi: 10.1021/ACS.JAFC.7B04528/ASSET/IMAGES/MEDIUM/JF-2017-04528A_0013.GIF.
dc.relationJ. H. R. Llanos and C. C. Tadini, Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers, Int J Biol Macromol, vol. 107, no. PartA, pp. 371-382, Feb. 2018, doi: 10.1016/J.IJBIOMAC.2017.09.001.
dc.relationA. Rubio-López, A. Olmedo, A. Díaz-Álvarez, and C. Santiuste, Manufacture of compression moulded PLA based biocomposites: A parametric study, Compos Struct, vol. 131, pp. 995-1000, Nov. 2015, doi: 10.1016/J.COMPSTRUCT.2015.06.066.
dc.relationK. Deshmukh, M. Basheer Ahamed, R. R. Deshmukh, S. K. Khadheer Pasha, P. R. Bhagat, and K. Chidambaram, Biopolymer Composites with High Dielectric Performance: Interface Engineering, Biopolymer Composites in Electronics, pp. 27-128, 2017, doi: 10.1016/B978-0-12-809261-3.00003-6.
dc.relationP. Cazón and M. Vázquez, Mechanical and barrier properties of chitosan combined with other components as food packaging film, Environ Chem Lett, vol. 18, no. 2, pp. 257-267, Mar. 2020, doi: 10.1007/S10311-019-00936-3.
dc.relationN. Morin-Crini, E. Lichtfouse, G. Torri, and G. Crini, Fundamentals and Applications of Chitosan, vol. 35, p. 978, 2019, doi: 10.1007/978-3-030-16538-3_2ï.
dc.relationM. Murariu and P. Dubois, PLA composites: From production to properties, Adv Drug Deliv Rev, vol. 107, pp. 17-46, Dec. 2016, doi: 10.1016/J.ADDR.2016.04.003.
dc.relationK. Muna and T. K, Effect of filler type on mechanical and biological properties of electrospun PLA used for bone tissue applications, Front Bioeng Biotechnol, vol. 4, 2016, doi: 10.3389/CONF.FBIOE.2016.01.02318/EVENT_ABSTRACT.
dc.relationG. Mármol, C. Gauss, and R. Fangueiro, Potential of cellulose microfibers for PHA and PLA biopolymers reinforcement, Molecules, vol. 25, no. 20, Oct. 2020, doi: 10.3390/MOLECULES25204653
dc.relationM. Murariu and P. Dubois, PLA composites: From production to properties' , Adv Drug Deliv Rev, vol. 107, pp. 17-46, 2016, doi: 10.1016/j.addr.2016.04.003.
dc.relationK. Oksman, M. Skrifvars, and J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos Sci Technol, vol. 63, no. 9, pp. 1317-1324, Jul. 2003, doi: 10.1016/S0266- 3538(03)00103-9.
dc.relationF. A. Syamani, Y. D. Kurniawan, and L. Suryanegara, CELLULOSE FIBERS FROM OIL PALM FRONDS REINFORCED POLYLACTIC ACID COMPOSITE, Adopted from MEV Journal, 2012, Accessed: May 17, 2023. [Online]. Available: www.mevjournal.com
dc.relationL. Suryanegara, A. N. Nakagaito, and H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos Sci Technol, vol. 69, no. 7-8, pp. 1187-1192, Jun. 2009, doi: 10.1016/J.COMPSCITECH.2009.02.022.
dc.relationP. G. Ponnusamy, S. Sharma, and S. Mani, Cotton noil based cellulose microfibers reinforced polylactic acid composite films for improved water vapor and ultraviolet light barrier properties, J Appl Polym Sci, vol. 139, no. 24, p. 52329, Jun. 2022, doi: 10.1002/APP.52329.
dc.relationM. A. Ruz-Cruz, P. J. Herrera-Franco, E. A. Flores-Johnson, M. V. Moreno-Chulim, L. M. Galera- Manzano, and A. Valadez-González, Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites, Journal of Materials Research and Technology, vol. 18, pp. 485-495, May 2022, doi: 10.1016/J.JMRT.2022.02.072.
dc.relationD. Shumigin, E. Tarasova, A. Krumme, and P. Meier, Rheological and Mechanical Properties of Poly(lactic) Acid/Cellulose and LDPE/Cellulose Composites, Materials Science , vol. 17, no. 1, pp. 32-37, Mar. 2011, doi: 10.5755/J01.MS.17.1.245.
dc.relationA. Rashdan Bin Ab Rashid, S. Alam, H. Binti Husin, S. Binti Mohd Alauddin, and A. Nuklear Malaysia Bangi, Performance of Polylactic Acid Natural Fiber Biocomposite Mohammed Iqbal Bin Shueb, International Journal of Applied Chemistry, vol. 12, no. 1, pp. 72-77, 2016, Accessed: May 18, 2023. [Online]. Available: http://www.ripublication.com
dc.relationM. Li et al., Recent advancements of plant-based natural fiber-reinforced composites and their applications, Compos B Eng, vol. 200, no. 1, Aug. 2020, doi: 10.1016/J.COMPOSITESB.2020.108254.
dc.relationA. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, Mechanical properties of PLA composites with man- made cellulose and abaca fibres, Compos Part A Appl Sci Manuf, vol. 40, no. 4, pp. 404-412, Apr. 2009, doi: 10.1016/J.COMPOSITESA.2009.01.002.
dc.relationZ. Ren, R. Guo, H. Bi, X. Jia, M. Xu, and L. Cai, Interfacial Adhesion of Polylactic Acid on Cellulose Surface: A Molecular Dynamics Study, ACS Appl Mater Interfaces, vol. 12, no. 2, pp. 3236-3244, Jan. 2020, doi: 10.1021/ACSAMI.9B20101/ASSET/IMAGES/MEDIUM/AM9B20101_0013.GIF.
dc.relationN. Le Moigne et al., Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments, doi: 10.1016/j.indcrop.2013.11.022ï.
dc.relationA study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres, doi: 10.1088/1757-899X/368/1/012011.
dc.relationP. F. Alao, L. Marrot, M. D. Burnard, G. Lavric, M. Saarna, and J. Kers, Impact of Alkali and Silane Treatment on Hemp/PLA Composites Performance: From Micro to Macro Scale, Polymers (Basel), vol. 13, no. 6, Mar. 2021, doi: 10.3390/POLYM13060851.
dc.relationFabrication and characterization of thick films made of chitosan and nanofibrillar cellulose derived from pineapple leaf, doi: 10.1088/1757-899X/496/1/012021.
dc.relationD. G. Braga et al., Chitosan-based films reinforced with cellulose nanofibrils isolated from Euterpe oleraceae MART, Polymers from Renewable Resources, vol. 12, no. 2, pp. 46-59, 2021, doi: 10.1177/20412479211008747.
dc.relationR. A. Ilyas et al., Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications, Polymers 2022, Vol. 14, Page 874, vol. 14, no. 5, p. 874, Feb. 2022, doi: 10.3390/POLYM14050874.
dc.relationL. T. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid), Prog Polym Sci, vol. 33, no. 8, pp. 820-852, Aug. 2008, doi: 10.1016/J.PROGPOLYMSCI.2008.05.004.
dc.relationC. Abeykoon, P. Sri-Amphorn, and A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, International Journal of Lightweight Materials and Manufacture, vol. 3, no. 3, pp. 284-297, Sep. 2020, doi: 10.1016/J.IJLMM.2020.03.003.
dc.relationM. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study, Compos Sci Technol, vol. 66, no. 11-12, pp. 1813-1824, Sep. 2006, doi: 10.1016/J.COMPSCITECH.2005.10.015.
dc.relationL. A. Chicos et al., Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties, Polymers 2022, Vol. 14, Page 4988, vol. 14, no. 22, p. 4988, Nov. 2022, doi: 10.3390/POLYM14224988.
dc.relationG. Bogoeva-Gaceva, D. Dimeski, and V. Srebrenkoska, Biocomposites based on poly(Lactic acid) and kenaf fibers: Effect of microfibrillated cellulose, Macedonian Journal of Chemistry and Chemical Engineering, vol. 32, no. 2, pp. 331-335, 2013, doi: 10.20450/MJCCE.2013.451.
dc.relationH. Liu, Z. Huang, and X. Chen, Analysis of crystallization and melting behavior of composites before and after annealing You may also like Preparation and properties of hydrotalcite inorganic filler/polylactic acid composites, doi: 10.1088/1757-899X/733/1/012025.
dc.relationY. Song, K. Tashiro, D. Xu, J. Liu, and Y. Bin, Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite, Polymer (Guildf), vol. 54, no. 13, pp. 3417-3425, Jun. 2013, doi: 10.1016/J.POLYMER.2013.04.054.
dc.relationR. Auras, B. Harte, and S. Selke, Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films, J Appl Polym Sci, vol. 92, no. 3, pp. 1790-1803, May 2004, doi: 10.1002/APP.20148.
dc.relationM. P. Arrieta, Films de PLA y PLA-PHB plastificados para su aplicación en envases de alimentos. Caracterización y análisis de los procesos de degradación, Riunet, Jul. 2014, doi: 10.4995/THESIS/10251/39338.
dc.relationS. Dey et al., Preparation, Characterization and Performance Evaluation of Chitosan as an Adsorbent for Remazol Red, 2016.
dc.relationL. Deng, H. Qi, C. Yao, M. Feng, and A. Dong, Investigation on the properties of methoxy poly(ethylene glycol)/chitosan graft co-polymers, J Biomater Sci Polym Ed, vol. 18, no. 12, pp. 1575-1589, 2007, doi: 10.1163/156856207794761943.
dc.relationK. Sreenivasan, Thermal stability studies of some chitosanmetal ion complexes using differential scanning calorimetry, Polym Degrad Stab, vol. 52, no. 1, pp. 85-87, Apr. 1996, doi: 10.1016/0141- .00220-0)95(3910
dc.relationP. P. Dhawade and R. N. Jagtap, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry, Accessed: May 18, 2023. [Online]. Available: www.pelagiaresearchlibrary.com
dc.relationC. Qiao, X. Ma, X. Wang, and J. Yao, Effect of water on the thermal transition in chitosan films, Polymer Crystallization, vol. 2, no. 6, p. e10092, Dec. 2019, doi: 10.1002/PCR2.10092.
dc.relationY. Dong, Y. Ruan, H. Wang, Y. Zhao, and D. Bi, Studies on glass transition temperature of chitosan with four techniques, J Appl Polym Sci, vol. 93, no. 4, pp. 1553-1558, Aug. 2004, doi: 10.1002/APP.20630.
dc.relationZ. Cui, E. S. Beach, and P. T. Anastas, Modification of chitosan films with environmentally benign reagents for increased water resistance, http://mc.manuscriptcentral.com/tgcl, vol. 4, no. 1, pp. 35-40, Mar. 2011, doi: 10.1080/17518253.2010.500621.
dc.relationL. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, and J. Debevere, Developments in the active packaging of foods, Trends Food Sci Technol, vol. 10, no. 3, pp. 77-86, Mar. 1999, doi: 10.1016/S0924-2244(99)00032-1.
dc.relationJ. R. Westlake, M. W. Tran, Y. Jiang, X. Zhang, A. D. Burrows, and M. Xie, Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects, vol. 2, pp. 1166-1183, 2022, doi: 10.1021/acsfoodscitech.2c00070.
dc.relationS. Yildirim et al., Active Packaging Applications for Food, Compr Rev Food Sci Food Saf, vol. 17, no. 1, pp. 165-199, Jan. 2018, doi: 10.1111/1541-4337.12322.
dc.relationR. Vanitha and C. Kavitha, Development of natural cellulose fiber and its food packaging application, Mater Today Proc, vol. 36, pp. 903-906, Jan. 2021, doi: 10.1016/J.MATPR.2020.07.029.
dc.relationS. Ranjbaryan, B. Pourfathi, and H. Almasi, Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil, Food Packag Shelf Life, vol. 21, p. 100341, Sep. 2019, doi: 10.1016/J.FPSL.2019.100341.
dc.relationJ. Wu et al., The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes, Food Hydrocoll, vol. 43, pp. 427-435, Jan. 2015, doi: 10.1016/J.FOODHYD.2014.06.017.
dc.relationI. Arcan and A. Yemenicioglu, Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds, J Agric Food Chem, vol. 62, no. 32, pp. 8238-8246, Aug. 2014, doi: 10.1021/JF500666W/SUPPL_FILE/JF500666W_SI_001.PDF.
dc.relationH. Esmaeili et al., Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages, Meat Sci, vol. 166, p. 108135, Aug. 2020, doi: 10.1016/J.MEATSCI.2020.108135.
dc.relationC. J. KIRBY, C. J. WHITTLE, N. RIGBY, D. T. COXON, and B. A. LAW, Stabilization of ascorbic acid by microencapsulation in liposomes, Int J Food Sci Technol, vol. 26, no. 5, pp. 437-449, Oct. 1991, doi: 10.1111/J.1365-2621.1991.TB01988.X.
dc.relationN. Monteiro, A. Martins, R. L. Reis, and N. M. Neves, Liposomes in tissue engineering and regenerative medicine, J R Soc Interface, vol. 11, no. 101, Dec. 2014, doi: 10.1098/RSIF.2014.0459.
dc.relationM. Al-Moghazy, H. S. El-sayed, H. H. Salama, and A. A. Nada, Edible packaging coating of encapsulated thyme essential oil in liposomal chitosan emulsions to improve the shelf life of Karish cheese, Food Biosci, vol. 43, p. 101230, Oct. 2021, doi: 10.1016/J.FBIO.2021.101230.
dc.relationA. M. S. Simão, M. Bolean, T. A. C. Cury, R. G. Stabeli, R. Itri, and P. Ciancaglini, Liposomal systems as carriers for bioactive compounds, Biophys Rev, vol. 7, no. 4, pp. 391-397, Dec. 2015, doi: 10.1007/S12551-015-0180-8/FIGURES/1.
dc.relationD. H. Wardhani et al., Vitamin C encapsulation by a gelation method using deacetylated glucomannan as a matrix, J King Saud Univ Sci, vol. 32, no. 7, pp. 2924-2930, Oct. 2020, doi: 10.1016/J.JKSUS.2020.07.010.
dc.relationA. J. Garcia-Brand et al., Bioactive Poly(lactic acid) Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization, Polymers 2021, Vol. 13, Page 3707, vol. 13, no. 21, p. 3707, Oct. 2021, doi: 10.3390/POLYM13213707.
dc.relationC. J. KIRBY, C. J. WHITTLE, N. RIGBY, D. T. COXON, and B. A. LAW, Stabilization of ascorbic acid by microencapsulation in liposomes, Int J Food Sci Technol, vol. 26, no. 5, pp. 437-449, Oct. 1991, doi: 10.1111/J.1365-2621.1991.TB01988.X.
dc.relationZ. Jiao, X. Wang, Y. Yin, J. Xia, and Y. Mei, Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid, J Microencapsul, vol. 35, no. 3, pp. 272-280, Apr. 2018, doi: 10.1080/02652048.2018.1467509.
dc.relationX. Liu, P. Wang, Y. X. Zou, Z. G. Luo, and T. M. Tamer, Co-encapsulation of Vitamin C and beta- Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion, Food Research International, vol. 136, p. 109587, Oct. 2020, doi: 10.1016/J.FOODRES.2020.109587.
dc.relationI. Ahmad et al., Photostability and Interaction of Ascorbic Acid in Cream Formulations, AAPS PharmSciTech, vol. 12, no. 3, pp. 917-923, Sep. 2011, doi: 10.1208/S12249-011-9659-1.
dc.relationX. Yin et al., Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology, Antioxidants, vol. 11, no. 1, Jan. 2022, doi: 10.3390/ANTIOX11010153.
dc.relationM. R. I. Shishir, L. Xie, C. Sun, X. Zheng, and W. Chen, Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters, Trends Food Sci Technol, vol. 78, pp. 34-60, Aug. 2018, doi: 10.1016/J.TIFS.2018.05.018.
dc.relationA.Kamkaretal.,Nanocompositeactivepackagingbasedonchitosanbiopolymerloadedwithnano- liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet, Int J Food Microbiol, vol. 342, p. 109071, Mar. 2021, doi: 10.1016/J.IJFOODMICRO.2021.109071.
dc.relationM. F. A. Khan et al., Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment, Gels, vol. 8, no. 5, May 2022, doi: 10.3390/GELS8050277.
dc.relationL. Sturm and N. P. Ulrih, Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols, International Journal of Molecular Sciences 2021, Vol. 22, Page 6547, vol. 22, no. 12, p. 6547, Jun. 2021, doi: 10.3390/IJMS22126547.
dc.relationA. Gouda, O. S. Sakr, M. Nasr, and O. Sammour, Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications, J Drug Deliv Sci Technol, vol. 61, Feb. 2021, doi: 10.1016/J.JDDST.2020.102174.
dc.relationP. Nakhaei et al., Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol, Front Bioeng Biotechnol, vol. 9, p. 748, Sep. 2021, doi: 10.3389/FBIOE.2021.705886/BIBTEX.
dc.relationC. Sebaaly, A. Trifan, E. Sieniawska, and H. Greige-Gerges, Chitosan-coating effect on the characteristics of liposomes: A focus on bioactive compounds and essential oils: A review, Processes, vol. 9, no. 3, pp. 1-47, Mar. 2021, doi: 10.3390/PR9030445.
dc.relationJ. Andrade, C. González-Martínez, and A. Chiralt, The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes, Polymers 2020, Vol. 12, Page 497, vol. 12, no. 2, p. 497, Feb. 2020, doi: 10.3390/POLYM12020497.
dc.relationE. Alanas, Erdawati, G. Saefurahman, and A. S. B. A. Sani, Utilization of cellulose nanocrystals (CNC) as a filler for chitosan-based films for chili peppers packaging, IOP Conf Ser Earth Environ Sci, vol. 749, no. 1, May 2021, doi: 10.1088/1755-1315/749/1/012028.
dc.relationM. Ibrahim, O. Osman, and A. A. Mahmoud, Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach, J Comput Theor Nanosci, vol. 8, no. 1, pp. 117-123, Jan. 2011, doi: 10.1166/JCTN.2011.1668.
dc.relationY. Liu, X. Shen, H. Zhou, Y. Wang, and L. Deng, Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization, Appl Surf Sci, vol. 370, pp. 270-278, May 2016, doi: 10.1016/J.APSUSC.2016.02.124.
dc.relationL. Liping, L. Kexin, D. Huipu, L. Jia, and Z. Jie, Study on Preparation of a Chitosan/Vitamin C Complex and Its Properties in Cosmetics, Nat Prod Commun, vol. 15, no. 10, 2020, doi: 10.1177/1934578X20946876.
dc.relationR. Silva, H. Ferreira, C. Little, and A. Cavaco-Paulo, Effect of ultrasound parameters for unilamellar liposome preparation, Ultrason Sonochem, vol. 17, no. 3, pp. 628-632, Mar. 2010, doi: 10.1016/J.ULTSONCH.2009.10.010.
dc.relationF. R. Favarin et al., Vitamin C as a shelf-life extender in liposomes, Brazilian Journal of Pharmaceutical Sciences, vol. 58, p. e20492, Jan. 2023, doi: 10.1590/S2175-97902022E20492.
dc.relationY. Song, K. Tashiro, D. Xu, J. Liu, and Y. Bin, Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite, Polymer (Guildf), vol. 54, no. 13, pp. 3417-3425, Jun. 2013, doi: 10.1016/J.POLYMER.2013.04.054.
dc.relationQ. Xu, T. Zhong, and H. L. Li, Antioxidant and Free Radical Scavenging Activities of N-Modified Chitosans, Adv Mat Res, vol. 1002, pp. 91-98, 2014, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.1002.91.
dc.relationM. Muthu, J. Gopal, S. Chun, A. J. P. Devadoss, N. Hasan, and I. Sivanesan, Crustacean Waste- Derived Chitosan: Antioxidant Properties and Future Perspective, Antioxidants 2021, Vol. 10, Page 228, vol. 10, no. 2, p. 228, Feb. 2021, doi: 10.3390/ANTIOX10020228.
dc.relationL. Wang et al., Towards industrial-scale production of cellulose nanocomposites using melt processing: A critical review on structure-processing-property relationships, Compos B Eng, vol. 201, p. 108297, Nov. 2020, doi: 10.1016/J.COMPOSITESB.2020.108297.
dc.relationQ. D. Shen, Preparation, structure and properties of fluorine-containing polymers, Dielectric Polymer Materials for High-Density Energy Storage, pp. 59-102, Jan. 2018, doi: 10.1016/B978-0-12- 813215-9.00003-8.
dc.relationA. F. Pant, S. Sangerlaub, and K. Muller, Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films, Materials, vol. 10, no. 5, 2017, doi: 10.3390/MA10050489.
dc.relationY.Li,J.Ren,B.Wang,W.Lu,H.Wang,andW.Hou, Development of biobased multilayer films with improved compatibility between polylactic acid-chitosan as a function of transition coating of SiOx, Int J Biol Macromol, vol. 165, pp. 1258-1263, Dec. 2020, doi: 10.1016/J.IJBIOMAC.2020.10.001.
dc.relationS. Strnad and L. F. Zemljic, Cellulose-Chitosan Functional Biocomposites, Polymers (Basel), vol. 15, no. 2, Jan. 2023, doi: 10.3390/POLYM15020425.
dc.relationC. Charcosset, A. Juban, J. P. Valour, S. Urbaniak, and H. Fessi, Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices, Chemical Engineering Research and Design, vol. 94, pp. 508-515, Feb. 2015, doi: 10.1016/J.CHERD.2014.09.008.
dc.relationM.Varvara,G.Bozzo,G.Celano,C.Disanto,C.N.Pagliarone,andG.V.Celano,TheUseofAscorbic Acid as a Food Additive: Technical-Legal Issues, Ital J Food Saf, vol. 5, no. 1, pp. 7-10, Jan. 2016, doi: 10.4081/IJFS.2016.4313.
dc.relationM. G. Bhat, NUTRITIVE VALUE OF CASHEW. Accessed: May 21, 2023. [Online]. Available: https://cashew.icar.gov.in/wp content/uploads/2017/04/Nutritive%20Value%20of%20Cashew.pdf
dc.relationL. J. Cruz Reina et al., Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties, Heliyon, vol. 8, no. 5, p. e09528, May 2022, doi: 10.1016/J.HELIYON.2022.E09528.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDevelopment of composite biofilms from the use and valorization of Colombian agro-industrial wastes as a potential application in active packaging
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución