dc.contributorPardo Villaveces, Natalia
dc.contributorGonzález Molina, María Alejandra
dc.contributorEickmann, Benjamin
dc.creatorRico Traslaviña, Jorge David
dc.date.accessioned2023-06-22T21:19:03Z
dc.date.accessioned2023-09-06T23:14:30Z
dc.date.available2023-06-22T21:19:03Z
dc.date.available2023-09-06T23:14:30Z
dc.date.created2023-06-22T21:19:03Z
dc.date.issued2023-06
dc.identifierhttp://hdl.handle.net/1992/67810
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726335
dc.description.abstractLos humedales como los manglares son ecosistemas de suma importancia para el progreso humano, y medios relevantes que nos ayudan a cumplir los objetivos de desarrollo sostenible de la ONU, por lo que es de suma importancia monitorearlos y determinar si se están conservando. Así, el principal objetivo de este estudio multitemporal y espectral es monitorear las variaciones en el uso del suelo del Sitio Ramsar Delta estuarino del río Magdalena Ciénaga Grande de Santa Marta, el cual se efectuó a través de imágenes satelitales de Landsat con ayuda del programa de ArcGIS. De esta manera, se realizaron índices espectrales como NDVI, NDWI, NDMI y GNDVI para analizar las condiciones en la vegetación y la calidad del agua. Adicionalmente, se utilizó la clasificación supervisada para identificar los manglares y otros tipos de vegetación, así como para detectar las actividades humanas en la zona de estudio, cuantificando los cambios de área en el uso y cobertura del suelo, ejecutado para 5 periodos. Los resultados mostraron que la cobertura de manglares ha disminuido en la zona de estudio debido a actividades humanas, tales como construcción de infraestructuras y tala de bosques, adecuándolos a diferentes explotaciones, principalmente agricultura. De igual forma, se encontró que la calidad del agua ha disminuido en los últimos años, por procesos de sedimentación y eutrofización. Este estudio pudo identificar las variaciones en el tiempo de las principales coberturas del suelo e identificar su uso, lo cual permitió cuantificar el área de manglar y las principales actividades humanas desempeñadas en la zona. Los resultados indicaron que la cobertura de manglares se ha menguado y que la calidad del agua ha disminuido debido a la actividad humana. Los resultados de este estudio suministran información fundamental que puede repercutir en la toma de decisiones, y por consiguiente en la implementación de políticas tendientes en proteger la biodiversidad y la calidad del agua en un sitio Ramsar.
dc.description.abstractWetlands such as mangroves are ecosystems of utmost importance for human development and to meet the UN Sustainable Development Goals, so it is of utmost importance to monitor and determine whether these ecosystems are being conserved. Thus, the main objective of this multi-temporal and spectral study is to monitor the variations in land use of the Ramsar Site Delta estuarine of the Magdalena River Ciénaga Grande de Santa Marta, which was carried out through Landsat satellite images with the help of the ArcGIS program. Spectral indices such as NDVI, NDWI, NDMI and GNDVI were used to analyze vegetation conditions and water quality. In addition, supervised classification was used to identify mangroves and other vegetation types, as well as to detect human activities in the study area and to quantify changes in land use and land cover area, carried out for 5 periods. The results showed that mangrove cover has decreased in the study area due to human activity, such as infrastructure construction and forest clearing to make it suitable for mainly agricultural activities. It was also found that water quality in the study area has decreased in recent years due to sedimentation and eutrophication processes. The results of this study are important to inform decision making and policy implementation to protect biodiversity and water quality in the study area. Thus, this study was able to identify the variations over time of the main land covers and identify their use, which allowed us to quantify the mangrove area and the main human activities in the study area. The results indicated that mangrove cover has decreased and water quality has decreased due to human activity in the study area. These results can be used to inform decision making and policy implementation to protect biodiversity and water quality in this Ramsar site.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherGeociencias
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Geociencias
dc.relationAbd-El Monsef, H., & Smith, S. E. (2017). A new approach for estimating mangrove canopy cover using Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183-194. https://doi.org/10.1016/j.compag.2017.02.007
dc.relationAguilera-Díaz, M. M. (2011). Habitantes del agua: El complejo lagunar de la Ciénaga Grande de Santa Marta. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 144. https://doi.org/10.32468/dtseru.144
dc.relationAkhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
dc.relationAljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red Sea. Forests, 12(1), 52. https://doi.org/10.3390/f12010052
dc.relationAyangbenro, A. S., & Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growthpromoting archaea and bacteria. Current Plant Biology, 25, 100173.
dc.relationBatur, E., & Maktav, D. (2018). Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2983-2989. https://doi.org/10.1109/TGRS.2018.2879024
dc.relationBurns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791-811. https://doi.org/10.1007/s11119-021-09861-4
dc.relationCardona, C. G., Moreno, J., Contreras, A., Sanchez-Nuñez, D., Moreno, N. A., Guerrero, D., ... & Navarro, J. L. (2023). Accounting of marine and coastal ecosystems at the Ramsar Site, Estuarine Delta System of the Magdalena River, Ciénaga Grande de Santa Marta, Colombia. One Ecosystem, 8, e98852.
dc.relationCandiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026
dc.relationChen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706
dc.relationCongalton, R. (2004). Putting the Map Back in Map Accuracy Assessment (pp. 1-11). https://doi.org/10.1201/9780203497586.ch1
dc.relationCorporación Autónoma Regional del Magdalena - Corpamag. (19 de noviembre de 2021). Ciénaga Grande de Santa Marta. Recuperado el 15 de abril de 2023, de https://www.corpamag.gov.co/en/informacionambiental/ecosistemas-fisiograficos/cienaga-grande-de-santa-marta
dc.relationDas, S., Kaur, S., & Jutla, A. (2021). Earth observations based assessment of impact of COVID-19 lockdown on surface water Quality of Buddha Nala, Punjab, India. Water, 13(10), 1363. https://doi.org/10.3390/w13101363
dc.relationDu, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354
dc.relationDunea, D., Bretcan, P., Purcoi, L., Tanislav, D., Serban, G., Neagoe, A., ... & Iordache, . (2021). Effects of riparian vegetation on evapotranspiration processes and water quality of small plain streams. Ecohydrology & Hydrobiology, 21(4), 629-640. https://doi.org/10.1016/j.ecohyd.2021.02.004
dc.relationEspinosa-Díaz, L. F., Zapata-Rey, Y. T., Ibarra-Gutierrez, K., & Bernal, C. A. (2021). Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring. Science of The Total Environment, 785, 147203. https://doi.org/10.1016/j.scitotenv.2021.147203
dc.relationEsri (2022) What's new in ArcMap (10.8) [Computer software].
dc.relationEzcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., & Aburto-Oropeza, O. (2016). Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proceedings of the National Academy of Sciences, 113(16), 4404-4409. https://doi.org/10.1073/pnas.1519774113
dc.relationFernandez, C., Saunier, A., Wortham, H., Ormeño, E., Proffit, M., Lecareux, C., ... & Bousquet-Mélou, A. (2023). Mangrove's species are weak isoprenoid emitters. Estuarine, Coastal and Shelf Science, 108256. https://doi.org/10.1016/j.ecss.2023.108256
dc.relationFilipovic, S., Lior, N., & Radovanovic, M. (2022). The green deal-just transition and sustainable development goals Nexus. Renewable and Sustainable Energy Reviews, 168, 112759. https://doi.org/10.1016/j.rser.2022.112759
dc.relationFranks, S., Storey, J., & Rengarajan, R. (2020). The new landsat collection-2 digital elevation model. Remote Sensing, 12(23), 3909. https://doi.org/10.3390/rs12233909
dc.relationFriess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2 C world. Wiley Interdisciplinary Reviews: Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792
dc.relationGao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034- 4257(96)00067-3
dc.relationGitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
dc.relationGupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139. https://doi.org/10.1016/j.mex.2018.09.011
dc.relationHafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., ... & Pun, L. (2019). Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote sensing, 11(6), 617. https://doi.org/10.3390/rs11060617
dc.relationHu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of the total environment, 586, 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001
dc.relationHuang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1
dc.relationINVEMAR. (2019). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2019. Vol. Volumen 18.
dc.relationJaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J. A., Guittard, A., ... & Espinosa, L. F. (2018). Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands, 38, 755-767. https://doi.org/10.1007/s13157- 018-1024-7
dc.relationKaita, E., Markham, B., Haque, M. O., Dichmann, D., Gerace, A., Leigh, L., ... & Crawford, C. J. (2022). Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution. Remote Sensing, 14(21), 5414. https://doi.org/10.3390/rs14215414
dc.relationKhan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. Eutrophication: Causes, Consequences and Control: Volume 2, 1-15.
dc.relationLawley, V., Lewis, M., Clarke, K., & Ostendorf, B. (2016). Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological Indicators, 60, 1273- 1283. https://doi.org/10.1016/j.ecolind.2015.03.021
dc.relationLi, K., Chen, S., Pang, X., Cai, J., Zhang, X., Liu, Y., ... & Zhou, X. (2022). Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. European Journal of Medicinal Chemistry, 114117. https://doi.org/10.1016/j.ejmech.2022.114117
dc.relationLi, C., Rousta, I., Olafsson, H., & Zhang, H. (2023). Lake Water Quality and Dynamics Assessment during 1990-2020 (A Case Study: Chao Lake, China). Atmosphere, 14(2), 382. https://doi.org/10.3390/atmos14020382
dc.relationMacreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Duarte, C. M. (2019). The future of Blue Carbon science. Nature communications, 10(1), 3998. https://doi.org/10.1038/s41467-019-11693-w
dc.relationMangewa, L. J., Ndakidemi, P. A., Alward, R. D., Kija, H. K., Bukombe, J. K., Nasolwa, E. R., & Munishi, L. K. (2022). Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania. Earth, 3(3), 769- 787. https://doi.org/10.3390/earth3030044
dc.relationMao, S. H., Zhang, H. H., Zhuang, G. C., Li, X. J., Liu, Q., Zhou, Z., ... & Yang, G. P. (2022). Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications, 13(1), 7309. https://doi.org/10.1038/s41467-022-35082-y
dc.relationMartinez Baños, V. T. (2019). Cambios en los capitales comunitarios de la población palafítica de Bocas de Aracataca (Pueblo Viejo, Magdalena), durante los últimos 70 años. https://doi.org/10.11144/Javeriana.10554.45004
dc.relationMaryantika, N., & Lin, C. (2017). Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4(4), 321-332. https://doi.org/10.1016/j.inpa.2017.06.003
dc.relationMasek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968
dc.relationMcFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
dc.relationMeza, T. C., Díaz, L. F. E., & Aguas, L. J. V. (2022). OCURRENCIA Y DISTRIBUCIÓN DE Vibrio cholerae CULTIVABLE EN LA CIÉNAGA GRANDE DE SANTA MARTA, CARIBE COLOMBIANO. Acta Biológica Colombiana, 27(2). https://doi.org/10.15446/abc.v27n2.92057
dc.relationMoreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. International Journal of Applied Earth Observation and Geoinformation, 38, 204-215. https://doi.org/10.1016/j.jag.2015.01.008
dc.relationOtero, V., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., Lucas, R., & Dahdouh-Guebas, F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sensing, 11(7), 774. https://doi.org/10.3390/rs11070774
dc.relationPastor-Guzman, J., Dash, J., & Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote sensing of environment, 205, 71-84. https://doi.org/10.1016/j.rse.2017.11.009
dc.relationPettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011
dc.relationPomárico, A. T., Peña, A. L., Ante, R. F., & Duarte, L. O. (2020). Dieta y amplitud del nicho trófico del cormorán neotropical [Nannopterum brasilianus (Gmelin, 1789)] en el Santuario de Flora y Fauna Ciénaga Grande de Santa Marta, Caribe de Colombia. Boletín de Investigaciones Marinas y Costeras, 49(SuplEsp), 193-208. https://doi.org/10.25268/bimc.invemar.2020.49.SuplEsp.1072
dc.relationQiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of Landsat image compositing algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375
dc.relationRabiei, J., Khademi, M. S., Bagherpour, S., Ebadi, N., Karimi, A., & Ostad-Ali-Askari, K. (2022). Investigation of fire risk zones using heat-humidity time series data and vegetation. Applied Water Science, 12(9), 216. https://doi.org/10.1007/s13201-022-01742-z
dc.relationRahman, M. M., Lamb, D. W., & Stanley, J. N. (2015). The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology, 202, 39-43. https://doi.org/10.1016/j.agrformet.2014.12.001
dc.relationRepública de Colombia. (2009). Decreto 3888. Modifica el artículo 1° del Decreto 224 de 1998.
dc.relationRokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing, 6(5), 4173-4189. https://doi.org/10.3390/rs6054173
dc.relationRuan, L., Yan, M., Zhang, L., Fan, X., & Yang, H. (2022). Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000-2018. Science of The Total Environment, 844, 157075. https://doi.org/10.1016/j.scitotenv.2022.157075
dc.relationSabins, F. F., & Ellis, J. M. (2020). Remote sensing: Principles, interpretation, and applications. Waveland Press.
dc.relationSagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., ... & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187
dc.relationSasmito, S. D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, M. F., Lovelock, C. E., & Murdiyarso, D. (2023). Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves. Nature Ecology & Evolution, 1-9. https://doi.org/10.1038/s41559-022-01926-5
dc.relationSharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84-93. https://doi.org/10.1016/j.ecoser.2015.02.007
dc.relationSisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. In International conference on recent advances and innovations in engineering (ICRAIE-2014) (pp. 1-4). IEEE. doi: 10.1109/ICRAIE.2014.6909319.
dc.relationTaloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051.
dc.relationTeixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597. https://doi.org/10.3390/rs12162597
dc.relationTorres Guevara, L. E., Schlüter, A., & Lopez, M. C. (2016). Collective action in a tropical estuarine lagoon: Adapting Ostrom's SES framework to Ciénaga Grande de Santa Marta, Colombia. International Journal of the Commons, 10(1), 334-362.
dc.relationToth, C., & Józków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
dc.relationTrofymchuk, O., Okhariev, V., & Trysnyuk, V. (2020). Environmental security management of geosystems. In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214- 4609.201902083
dc.relationTucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
dc.relationVinciková, H., Hanus, J., & Pechar, L. (2015). Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands ecology and management, 23, 933-946. https://doi.org/10.1007/s11273-015-9431-5
dc.relationWang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956- 2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223
dc.relationWulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., ... & Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195
dc.relationXue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017. https://doi.org/10.1155/2017/1353691
dc.relationZaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105, 102499. https://doi.org/10.1016/j.geothermics.2022.102499
dc.relationZaitunah, A., Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 126, No. 1, p. 012112). IOP Publishing. https://10.1088/1755- 1315/126/1/012112
dc.relationZhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510. https://doi.org/10.1002/ldr.2246
dc.relationZhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7(6), e01366. https://doi.org/10.1002/ecs2.1366
dc.relationZhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., & Li, X. (2017). Mapping mangrove forests using multitidal remotely-sensed data and a decision-tree-based procedure. International journal of applied earth observation and geoinformation, 62, 201-214. https://doi.org/10.1016/j.jag.2017.06.010
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnálisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución