dc.contributor | Pardo Villaveces, Natalia | |
dc.contributor | González Molina, María Alejandra | |
dc.contributor | Eickmann, Benjamin | |
dc.creator | Rico Traslaviña, Jorge David | |
dc.date.accessioned | 2023-06-22T21:19:03Z | |
dc.date.accessioned | 2023-09-06T23:14:30Z | |
dc.date.available | 2023-06-22T21:19:03Z | |
dc.date.available | 2023-09-06T23:14:30Z | |
dc.date.created | 2023-06-22T21:19:03Z | |
dc.date.issued | 2023-06 | |
dc.identifier | http://hdl.handle.net/1992/67810 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726335 | |
dc.description.abstract | Los humedales como los manglares son ecosistemas de suma importancia para el progreso humano, y medios relevantes que nos ayudan a cumplir los objetivos de desarrollo sostenible de la ONU, por lo que es de suma importancia monitorearlos y determinar si se están conservando. Así, el principal objetivo de este estudio multitemporal y espectral es monitorear las variaciones en el uso del suelo del Sitio Ramsar Delta estuarino del río Magdalena Ciénaga Grande de Santa Marta, el cual se efectuó a través de imágenes satelitales de Landsat con ayuda del programa de ArcGIS. De esta manera, se realizaron índices espectrales como NDVI, NDWI, NDMI y GNDVI para analizar las condiciones en la vegetación y la calidad del agua. Adicionalmente, se utilizó la clasificación supervisada para identificar los manglares y otros tipos de vegetación, así como para detectar las actividades humanas en la zona de estudio, cuantificando los cambios de área en el uso y cobertura del suelo, ejecutado para 5 periodos. Los resultados mostraron que la cobertura de manglares ha disminuido en la zona de estudio debido a actividades humanas, tales como construcción de infraestructuras y tala de bosques, adecuándolos a diferentes explotaciones, principalmente agricultura. De igual forma, se encontró que la calidad del agua ha disminuido en los últimos años, por procesos de sedimentación y eutrofización. Este estudio pudo identificar las variaciones en el tiempo de las principales coberturas del suelo e identificar su uso, lo cual permitió cuantificar el área de manglar y las principales actividades humanas desempeñadas en la zona. Los resultados indicaron que la cobertura de manglares se ha menguado y que la calidad del agua ha disminuido debido a la actividad humana. Los resultados de este estudio suministran información fundamental que puede repercutir en la toma de decisiones, y por consiguiente en la implementación de políticas tendientes en proteger la biodiversidad y la calidad del agua en un sitio Ramsar. | |
dc.description.abstract | Wetlands such as mangroves are ecosystems of utmost importance for human development and to meet the UN Sustainable Development Goals, so it is of utmost importance to monitor and determine whether these ecosystems are being conserved. Thus, the main objective of this multi-temporal and spectral study is to monitor the variations in land use of the Ramsar Site Delta estuarine of the Magdalena River Ciénaga Grande de Santa Marta, which was carried out through Landsat satellite images with the help of the ArcGIS program. Spectral indices such as NDVI, NDWI, NDMI and GNDVI were used to analyze vegetation conditions and water quality. In addition, supervised classification was used to identify mangroves and other vegetation types, as well as to detect human activities in the study area and to quantify changes in land use and land cover area, carried out for 5 periods. The results showed that mangrove cover has decreased in the study area due to human activity, such as infrastructure construction and forest clearing to make it suitable for mainly agricultural activities. It was also found that water quality in the study area has decreased in recent years due to sedimentation and eutrophication processes. The results of this study are important to inform decision making and policy implementation to protect biodiversity and water quality in the study area. Thus, this study was able to identify the variations over time of the main land covers and identify their use, which allowed us to quantify the mangrove area and the main human activities in the study area. The results indicated that mangrove cover has decreased and water quality has decreased due to human activity in the study area. These results can be used to inform decision making and policy implementation to protect biodiversity and water quality in this Ramsar site. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Geociencias | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Geociencias | |
dc.relation | Abd-El Monsef, H., & Smith, S. E. (2017). A new approach for estimating mangrove canopy cover using
Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183-194.
https://doi.org/10.1016/j.compag.2017.02.007 | |
dc.relation | Aguilera-Díaz, M. M. (2011). Habitantes del agua: El complejo lagunar de la Ciénaga Grande de Santa
Marta. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 144.
https://doi.org/10.32468/dtseru.144 | |
dc.relation | Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors
responsible for water quality degradation: A review. Water, 13(19), 2660.
https://doi.org/10.3390/w13192660 | |
dc.relation | Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and
regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red
Sea. Forests, 12(1), 52. https://doi.org/10.3390/f12010052 | |
dc.relation | Ayangbenro, A. S., & Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growthpromoting archaea and bacteria. Current Plant Biology, 25, 100173. | |
dc.relation | Batur, E., & Maktav, D. (2018). Assessment of surface water quality by using satellite images fusion based on
PCA method in the Lake Gala, Turkey. IEEE Transactions on Geoscience and Remote Sensing, 57(5),
2983-2989. https://doi.org/10.1109/TGRS.2018.2879024 | |
dc.relation | Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad,
M. (2022). Determining nitrogen deficiencies for maize using various remote sensing
indices. Precision Agriculture, 23(3), 791-811. https://doi.org/10.1007/s11119-021-09861-4 | |
dc.relation | Cardona, C. G., Moreno, J., Contreras, A., Sanchez-Nuñez, D., Moreno, N. A., Guerrero, D., ... & Navarro, J.
L. (2023). Accounting of marine and coastal ecosystems at the Ramsar Site, Estuarine Delta System
of the Magdalena River, Ciénaga Grande de Santa Marta, Colombia. One Ecosystem, 8, e98852. | |
dc.relation | Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral
images and vegetation indices for precision farming applications from UAV images. Remote
sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026 | |
dc.relation | Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of
Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706 | |
dc.relation | Congalton, R. (2004). Putting the Map Back in Map Accuracy Assessment (pp. 1-11).
https://doi.org/10.1201/9780203497586.ch1 | |
dc.relation | Corporación Autónoma Regional del Magdalena - Corpamag. (19 de noviembre de 2021). Ciénaga Grande de Santa Marta. Recuperado el 15 de abril de 2023, de https://www.corpamag.gov.co/en/informacionambiental/ecosistemas-fisiograficos/cienaga-grande-de-santa-marta | |
dc.relation | Das, S., Kaur, S., & Jutla, A. (2021). Earth observations based assessment of impact of COVID-19 lockdown
on surface water Quality of Buddha Nala, Punjab, India. Water, 13(10), 1363.
https://doi.org/10.3390/w13101363 | |
dc.relation | Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies mapping from Sentinel-2 imagery
with modified normalized difference water index at 10-m spatial resolution produced by sharpening
the SWIR band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354 | |
dc.relation | Dunea, D., Bretcan, P., Purcoi, L., Tanislav, D., Serban, G., Neagoe, A., ... & Iordache, . (2021). Effects of
riparian vegetation on evapotranspiration processes and water quality of small plain
streams. Ecohydrology & Hydrobiology, 21(4), 629-640.
https://doi.org/10.1016/j.ecohyd.2021.02.004 | |
dc.relation | Espinosa-Díaz, L. F., Zapata-Rey, Y. T., Ibarra-Gutierrez, K., & Bernal, C. A. (2021). Spatial and temporal
changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two
decades of monitoring. Science of The Total Environment, 785, 147203.
https://doi.org/10.1016/j.scitotenv.2021.147203 | |
dc.relation | Esri (2022) What's new in ArcMap (10.8) [Computer software]. | |
dc.relation | Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., & Aburto-Oropeza, O. (2016). Coastal landforms and
accumulation of mangrove peat increase carbon sequestration and storage. Proceedings of the National
Academy of Sciences, 113(16), 4404-4409. https://doi.org/10.1073/pnas.1519774113 | |
dc.relation | Fernandez, C., Saunier, A., Wortham, H., Ormeño, E., Proffit, M., Lecareux, C., ... & Bousquet-Mélou, A.
(2023). Mangrove's species are weak isoprenoid emitters. Estuarine, Coastal and Shelf Science,
108256. https://doi.org/10.1016/j.ecss.2023.108256 | |
dc.relation | Filipovic, S., Lior, N., & Radovanovic, M. (2022). The green deal-just transition and sustainable development
goals Nexus. Renewable and Sustainable Energy Reviews, 168, 112759.
https://doi.org/10.1016/j.rser.2022.112759 | |
dc.relation | Franks, S., Storey, J., & Rengarajan, R. (2020). The new landsat collection-2 digital elevation model. Remote
Sensing, 12(23), 3909. https://doi.org/10.3390/rs12233909 | |
dc.relation | Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change
in a 2 C world. Wiley Interdisciplinary Reviews: Climate Change, 13(4), e792.
https://doi.org/10.1002/wcc.792 | |
dc.relation | Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water
from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034-
4257(96)00067-3 | |
dc.relation | Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global
vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298.
https://doi.org/10.1016/S0034-4257(96)00072-7 | |
dc.relation | Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An
index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI
imagery. MethodsX, 5, 1129-1139. https://doi.org/10.1016/j.mex.2018.09.011 | |
dc.relation | Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., ... & Pun, L. (2019). Comparison of
machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of
Hong Kong. Remote sensing, 11(6), 617. https://doi.org/10.3390/rs11060617 | |
dc.relation | Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and
status. Science of the total environment, 586, 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001 | |
dc.relation | Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized
difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry
Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1 | |
dc.relation | INVEMAR. (2019). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de
Santa Marta. Informe Técnico Final 2019. Vol. Volumen 18. | |
dc.relation | Jaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J. A., Guittard, A., ... & Espinosa, L. F.
(2018). Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the
Ciénaga Grande de Santa Marta, Colombia. Wetlands, 38, 755-767. https://doi.org/10.1007/s13157-
018-1024-7 | |
dc.relation | Kaita, E., Markham, B., Haque, M. O., Dichmann, D., Gerace, A., Leigh, L., ... & Crawford, C. J. (2022).
Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution. Remote
Sensing, 14(21), 5414. https://doi.org/10.3390/rs14215414 | |
dc.relation | Khan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. Eutrophication: Causes,
Consequences and Control: Volume 2, 1-15. | |
dc.relation | Lawley, V., Lewis, M., Clarke, K., & Ostendorf, B. (2016). Site-based and remote sensing methods for
monitoring indicators of vegetation condition: An Australian review. Ecological Indicators, 60, 1273-
1283. https://doi.org/10.1016/j.ecolind.2015.03.021 | |
dc.relation | Li, K., Chen, S., Pang, X., Cai, J., Zhang, X., Liu, Y., ... & Zhou, X. (2022). Natural products from mangrove
sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total
synthesis. European Journal of Medicinal Chemistry, 114117.
https://doi.org/10.1016/j.ejmech.2022.114117 | |
dc.relation | Li, C., Rousta, I., Olafsson, H., & Zhang, H. (2023). Lake Water Quality and Dynamics Assessment during
1990-2020 (A Case Study: Chao Lake, China). Atmosphere, 14(2), 382.
https://doi.org/10.3390/atmos14020382 | |
dc.relation | Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Duarte, C. M.
(2019). The future of Blue Carbon science. Nature communications, 10(1), 3998.
https://doi.org/10.1038/s41467-019-11693-w | |
dc.relation | Mangewa, L. J., Ndakidemi, P. A., Alward, R. D., Kija, H. K., Bukombe, J. K., Nasolwa, E. R., & Munishi, L.
K. (2022). Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary
Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania. Earth, 3(3), 769-
787. https://doi.org/10.3390/earth3030044 | |
dc.relation | Mao, S. H., Zhang, H. H., Zhuang, G. C., Li, X. J., Liu, Q., Zhou, Z., ... & Yang, G. P. (2022). Aerobic oxidation
of methane significantly reduces global diffusive methane emissions from shallow marine
waters. Nature Communications, 13(1), 7309. https://doi.org/10.1038/s41467-022-35082-y | |
dc.relation | Martinez Baños, V. T. (2019). Cambios en los capitales comunitarios de la población palafítica de Bocas de
Aracataca (Pueblo Viejo, Magdalena), durante los últimos 70 años.
https://doi.org/10.11144/Javeriana.10554.45004 | |
dc.relation | Maryantika, N., & Lin, C. (2017). Exploring changes of land use and mangrove distribution in the economic
area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in
Agriculture, 4(4), 321-332. https://doi.org/10.1016/j.inpa.2017.06.003 | |
dc.relation | Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020).
Landsat 9: Empowering open science and applications through continuity. Remote Sensing of
Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968 | |
dc.relation | McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open
water features. International journal of remote sensing, 17(7), 1425-1432.
https://doi.org/10.1080/01431169608948714 | |
dc.relation | Meza, T. C., Díaz, L. F. E., & Aguas, L. J. V. (2022). OCURRENCIA Y DISTRIBUCIÓN DE Vibrio cholerae
CULTIVABLE EN LA CIÉNAGA GRANDE DE SANTA MARTA, CARIBE
COLOMBIANO. Acta Biológica Colombiana, 27(2). https://doi.org/10.15446/abc.v27n2.92057 | |
dc.relation | Moreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015).
Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent
coral Reefs: Magdalena River and Rosario Islands, Colombia. International Journal of Applied Earth
Observation and Geoinformation, 38, 204-215. https://doi.org/10.1016/j.jag.2015.01.008 | |
dc.relation | Otero, V., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., Lucas, R., & Dahdouh-Guebas, F.
(2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the
Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sensing, 11(7), 774.
https://doi.org/10.3390/rs11070774 | |
dc.relation | Pastor-Guzman, J., Dash, J., & Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its
environmental drivers. Remote sensing of environment, 205, 71-84.
https://doi.org/10.1016/j.rse.2017.11.009 | |
dc.relation | Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the
satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology &
evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011 | |
dc.relation | Pomárico, A. T., Peña, A. L., Ante, R. F., & Duarte, L. O. (2020). Dieta y amplitud del nicho trófico del
cormorán neotropical [Nannopterum brasilianus (Gmelin, 1789)] en el Santuario de Flora y Fauna
Ciénaga Grande de Santa Marta, Caribe de Colombia. Boletín de Investigaciones Marinas y
Costeras, 49(SuplEsp), 193-208. https://doi.org/10.25268/bimc.invemar.2020.49.SuplEsp.1072 | |
dc.relation | Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of Landsat image compositing
algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375 | |
dc.relation | Rabiei, J., Khademi, M. S., Bagherpour, S., Ebadi, N., Karimi, A., & Ostad-Ali-Askari, K. (2022). Investigation
of fire risk zones using heat-humidity time series data and vegetation. Applied Water Science, 12(9),
216. https://doi.org/10.1007/s13201-022-01742-z | |
dc.relation | Rahman, M. M., Lamb, D. W., & Stanley, J. N. (2015). The impact of solar illumination angle when using
active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest
Meteorology, 202, 39-43. https://doi.org/10.1016/j.agrformet.2014.12.001 | |
dc.relation | República de Colombia. (2009). Decreto 3888. Modifica el artículo 1° del Decreto 224 de 1998. | |
dc.relation | Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using
multitemporal Landsat imagery. Remote sensing, 6(5), 4173-4189. https://doi.org/10.3390/rs6054173 | |
dc.relation | Ruan, L., Yan, M., Zhang, L., Fan, X., & Yang, H. (2022). Spatial-temporal NDVI pattern of global mangroves:
A growing trend during 2000-2018. Science of The Total Environment, 844, 157075.
https://doi.org/10.1016/j.scitotenv.2022.157075 | |
dc.relation | Sabins, F. F., & Ellis, J. M. (2020). Remote sensing: Principles, interpretation, and applications. Waveland
Press. | |
dc.relation | Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., ... & Adams, C. (2020).
Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices,
bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187.
https://doi.org/10.1016/j.earscirev.2020.103187 | |
dc.relation | Sasmito, S. D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, M. F., Lovelock, C. E., & Murdiyarso, D.
(2023). Challenges and opportunities for achieving Sustainable Development Goals through
restoration of Indonesia's mangroves. Nature Ecology & Evolution, 1-9.
https://doi.org/10.1038/s41559-022-01926-5 | |
dc.relation | Sharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from
the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84-93.
https://doi.org/10.1016/j.ecoser.2015.02.007 | |
dc.relation | Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for
remote sensing image. In International conference on recent advances and innovations in engineering
(ICRAIE-2014) (pp. 1-4). IEEE. doi: 10.1109/ICRAIE.2014.6909319. | |
dc.relation | Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized
difference moisture index, normalized difference water index of the Ravi basin using Landsat
data. Applied Computing and Geosciences, 9, 100051. | |
dc.relation | Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597. https://doi.org/10.3390/rs12162597 | |
dc.relation | Torres Guevara, L. E., Schlüter, A., & Lopez, M. C. (2016). Collective action in a tropical estuarine lagoon:
Adapting Ostrom's SES framework to Ciénaga Grande de Santa Marta, Colombia. International
Journal of the Commons, 10(1), 334-362. | |
dc.relation | Toth, C., & Józków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of
Photogrammetry and Remote Sensing, 115, 22-36. https://doi.org/10.1016/j.isprsjprs.2015.10.004 | |
dc.relation | Trofymchuk, O., Okhariev, V., & Trysnyuk, V. (2020). Environmental security management of geosystems.
In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No.
1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-
4609.201902083 | |
dc.relation | Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote
sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0 | |
dc.relation | Vinciková, H., Hanus, J., & Pechar, L. (2015). Spectral reflectance is a reliable water-quality estimator for
small, highly turbid wetlands. Wetlands ecology and management, 23, 933-946.
https://doi.org/10.1007/s11273-015-9431-5 | |
dc.relation | Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956-
2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223 | |
dc.relation | Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., ... & Cook, B.
D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195.
https://doi.org/10.1016/j.rse.2022.113195 | |
dc.relation | Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and
applications. Journal of sensors, 2017. https://doi.org/10.1155/2017/1353691 | |
dc.relation | Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal
potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105, 102499.
https://doi.org/10.1016/j.geothermics.2022.102499 | |
dc.relation | Zaitunah, A., Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis
for land cover types using landsat 8 oli in besitang watershed, Indonesia. In IOP Conference Series:
Earth and Environmental Science (Vol. 126, No. 1, p. 012112). IOP Publishing. https://10.1088/1755-
1315/126/1/012112 | |
dc.relation | Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment
changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510.
https://doi.org/10.1002/ldr.2246 | |
dc.relation | Zhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7(6), e01366.
https://doi.org/10.1002/ecs2.1366 | |
dc.relation | Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., & Li, X. (2017). Mapping mangrove forests using multitidal remotely-sensed data and a decision-tree-based procedure. International journal of applied earth
observation and geoinformation, 62, 201-214. https://doi.org/10.1016/j.jag.2017.06.010 | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta | |
dc.type | Trabajo de grado - Pregrado | |