dc.contributor | Bloch Morel, Natasha Ivonne | |
dc.contributor | Reyes Barrios, Luis Humberto | |
dc.contributor | Briceño Triana, Juan Carlos | |
dc.contributor | Albarracín, Sonia | |
dc.contributor | Genética y genómica del comportamiento | |
dc.creator | Esmeral Lascano, Natalia Paola | |
dc.date.accessioned | 2023-08-08T15:56:22Z | |
dc.date.accessioned | 2023-09-06T23:13:39Z | |
dc.date.available | 2023-08-08T15:56:22Z | |
dc.date.available | 2023-09-06T23:13:39Z | |
dc.date.created | 2023-08-08T15:56:22Z | |
dc.date.issued | 2023-08-03 | |
dc.identifier | http://hdl.handle.net/1992/69364 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726323 | |
dc.description.abstract | Parkinson's disease (PD) causes loss of motor control, cognitive and behavioral functions
due to damage to dopaminergic neurons. In astrocytes, the neurodegenerative process is due to the
imbalance in oxidative stress, making this cell type a focus of interest in the development of
Parkinson's desease. Currently, treatments for PD are not definitive, they are intended to attenuate
symptoms, and have side effects such as dyskinesias. Research has developed new ways to address
this disease through gene therapies, which consist of modifying the expression of genes of interest.
This project aims to evaluate a gene therapy based on CRISPR-nCas9 and a non-viral vehicle to
change the expression of the pink1 gene. The cellular effects will be quantified by means of three
tests focused on MAO-B activation, mitochondrial membrane potential and ROS production. The
information collected is fundamental for the rational design of more effective therapies for PD. To
achieve the objective, a mixed culture of astrocytes, neurons and microglia was generated, which
assimilate PD through MPTP toxicity. The recovery of the cells thanks to CRISPRa-pink1-MNP, allowed
to decrease the amount of MAO-B, ROS, the released JC-1 monomers, and intracellular calcium. In
addition, we obtained a restoration of the basal values of the cytokines IFN-gamma, IL-17A, IL-6, IL-1alpha and IL-1beta and a recovery of the EAAT1 antibody. allowing us to conclude that the pink1 gene is of great
value to treat and counteract cellular symptoms of Parkinson's together with the vehicle made up
of the magnetic nanoparticle. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | D. G. Standaert, M. H. Saint-Hilaire, and C. A. Thomas, Parkinson S Disease Handbook, The
American Parkinson Disease Association, vol. 2, no. 3, pp. 69-73, 2018. | |
dc.relation | R. Martínez-Fernández, A. Sánchez-Ferro, J. A. Obeso et al., Actualización en la enfermedad
de parkinson, Revista Médica Clínica Las Condes, vol. 27, no. 3, pp. 363-379, 2016. | |
dc.relation | . Román Benticuaga, M. Domínguez, D. T. Aire, and P. María, Arteterapia para enfermos con
alzhéimer, Arteterapia para enfermos con Alzhéimer, pp. 1-278, 2018. | |
dc.relation | F. Stocchi, L. Vacca, S. Ruggieri, and C. W. Olanow, Intermittent vs continuous levodopa
administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study,
Archives of neurology, vol. 62, no. 6, pp. 905-910, 2005. | |
dc.relation | T. Wirth, N. Parker, and S. Yl a-Herttuala, History of gene therapy, Gene, vol. 525, no. 2, pp.162-169, 2013. | |
dc.relation | V. Sudhakar and R. M. Richardson, Gene therapy for neurodegenerative diseases, Neurotherapeutics, vol. 16, no. 1, pp. 166-175, 2019. | |
dc.relation | H. D. E. Booth, W. D. Hirst, and R. Wade-Martins, The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis. Trends in neurosciences, vol. 40, no. 6, pp. 358-370, jun 2017 | |
dc.relation | A. A. Adriana, A. Santamaría, and M. K. Fainstein, MODELOS NEUROTÓXICOS DE LA
ENFERMEDAD DE PARKINSON Y DISFUNCIÓN MITOCONDRIAL *, vol. 29, no. 3, pp. 92-100, 2013. | |
dc.relation | G. M. Halliday and C. H. Stevens, Glia: initiators and progressors of pathology in parkinson's
disease, Movement Disorders, vol. 26, no. 1, pp. 6-17, 2011. | |
dc.relation | H.-J. Lee, J.-E. Suk, C. Patrick, E.-J. Bae, J.-H. Cho, S. Rho, D. Hwang, E. Masliah, and S.-J. Lee,
Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in
synucleinopathies, Journal of Biological Chemistry, vol. 285, no. 12, pp. 9262-9272, 2010. | |
dc.relation | X.-L. Gu, C.-X. Long, L. Sun, C. Xie, X. Lin, and H. Cai, Astrocytic expression of parkinson¿s diseaserelated a53t alpha-synuclein causes neu- rodegeneration in mice, Molecular brain, vol. 3, no. 1, pp. 1-16, 2010. | |
dc.relation | C. M. Bantle, W. D. Hirst, A. Weihofen, and E. Shlevkov, Mitochondrial dysfunction in astrocytes:
a role in parkinson's disease Frontiers in Cell and Developmental Biology, vol. 8, p. 608026, 2021. | |
dc.relation | S. Y.-Y. Pang, P. W.-L. Ho, H.-F. Liu, C.-T. Leung, L. Li, E. E. S. Chang, D. B. Ramsden, and S.-L. Ho,
The interplay of aging, genetics and environmental factors in the pathogenesis of parkinson's
disease, Translational Neurodegeneration, vol. 8, pp. 1-11, 2019. | |
dc.relation | A. M. Pickrell and R. J. Youle, The roles of pink1, parkin, and mitochondrial fidelity in parkinson's
disease, Neuron, vol. 85, no. 2, pp. 257-273, 2015. | |
dc.relation | P. M. Rappold and K. Tieu, Astrocytes and therapeutics for parkinson's disease,
Neurotherapeutics, vol. 7, no. 4, pp. 413-423, 2010. | |
dc.relation | J. W. Langston and I. Irwin, Mptp: current concepts and controversies, Clinical
neuropharmacology, vol. 9, no. 6, pp. 485-507, 1986. | |
dc.relation | R. E. Heikkila, B.-A. Sieber, L. Manzino, and P. K. Sonsalla, Some features of the nigrostriatal
dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (mptp) in the mouse,
Molecular and Chemical Neuropathology, vol. 10, pp. 171-183, 1989. | |
dc.relation | L. S. Forno, L. E. DeLanney, I. Irwin, D. Di Monte, and J. W. Langston, Astrocytes and parkinson's
disease, Progress in brain research, vol. 94, pp. 429-436, 1992. | |
dc.relation | D. Huang, J. Xu, J. Wang, J. Tong, X. Bai, H. Li, Z. Wang, Y. Huang, Y. Wu, M. Yu et al., Dynamic
changes in the nigrostriatal pathway in the mptp mouse model of parkinson's disease, Parkinson's
disease, vol. 2017, 2017. | |
dc.relation | H. Deng, J. Jankovic, Y. Guo, W. Xie, and W. Le, Small interfering rna targeting the pink1 induces
apoptosis in dopaminergic cells sh-sy5y, Biochemical and biophysical research communications, vol.
337, no. 4, pp. 1133-1138, 2005. | |
dc.relation | A. Wood-Kaczmar, S. Gandhi, Z. Yao, A. S. Abramov, E. A. Miljan, G. Keen, L. Stanyer, I.
Hargreaves, K. Klupsch, E. Deas et al., Pink1 is necessary for long term survival and mitochondrial
function in human dopaminergic neurons, PloS one, vol. 3, no. 6, p. e2455, 2008. | |
dc.relation | ] C. A. Gautier, T. Kitada, and J. Shen, Loss of pink1 causes mitochon- drial functional defects and
increased sensitivity to oxidative stress, Proceedings of the National Academy of Sciences, vol. 105,
no. 32, pp. 11 364-11 369, 2008. | |
dc.relation | J. W. Pridgeon, J. A. Olzmann, L.-S. Chin, and L. Li, Pink1 protects against oxidative stress by
phosphorylating mitochondrial chaperone trap1, PLoS biology, vol. 5, no. 7, p. e172, 2007. | |
dc.relation | C. Shen, W. Xian, H. Zhou, L. Chen, and Z. Pei, Potential protective effects of autophagy
activated in mpp+ treated astrocytes, Experimental and therapeutic medicine, vol. 12, no. 5, pp.
2803-2810, 2016. | |
dc.relation | C. Shundo, H. Zhang, T. Nakanishi, and T. Osaka, Cytotoxicity evaluation of magnetite (fe3o4)
nanoparticles in mouse embryonic stem cells, Colloids and Surfaces B: Biointerfaces, vol. 97, pp.
221-225, 2012. | |
dc.relation | T. L. Nguyen, T. H. Nguyen, and D. H. Nguyen, Development and in vitro evaluation of liposomes
using soy lecithin to encapsulate paclitaxel, International journal of biomaterials, vol. 2017, 2017. | |
dc.relation | M. Arsianti, M. Lim, C. P. Marquis, and R. Amal, Assembly of polyethylenimine-based magnetic
iron oxide vectors: insights into gene delivery, Langmuir, vol. 26, no. 10, pp. 7314-7326, 2010. | |
dc.relation | L. Qi, L. Wu, S. Zheng, Y. Wang, H. Fu, and D. Cui, Cell-penetrating magnetic nanoparticles for
highly efficient delivery and intracellular imaging of sirna, Biomacromolecules, vol. 13, no. 9, pp.
2723-2730, 2012. | |
dc.relation | J. Cifuentes, S. Cifuentes-Almanza, P. Ruiz Puentes, V. Quezada, A. F. González Barrios, M.-A.
Calderón-Peláez, M. L. Velandia-Romero, M. Rafat, C. Muñoz-Camargo, S. L. Albarracín et al.,
Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of
parkinson's disease, Frontiers in Bioengineering and Biotechnology, vol. 11, p. 1181842, 2023. | |
dc.relation | J. Bi, X.-b. Wang, L. Chen, S. Hao, L.-j. An, B. Jiang, and L. Guo, Catalpol protects mesencephalic
neurons against mptp induced neurotoxicity via attenuation of mitochondrial dysfunction and maob activity, Toxicology in Vitro, vol. 22, no. 8, pp. 1883-1889, 2008. | |
dc.relation | W. J. Nicklas, S. K. Youngster, M. V. Kindt, and R. E. Heikkila, Iv. mptp, mpp+ and mitochondrial
function, Life sciences, vol. 40, no. 8, pp. 721-729, 1987. | |
dc.relation | W. Brooks, M. Jarvis, and G. Wagner, Astrocytes as a primary locus for the conversion mptp
into mpp+, Journal of neural transmission, vol. 76, pp. 1-12, 1989. | |
dc.relation | C. Zhao, R. He, M. Shen, F. Zhu, M. Wang, Y. Liu, H. Chen, X. Li, and R. Qin, Pink1/parkinmediated mitophagy regulation by reactive oxygen species alleviates rocaglamide a-induced
apoptosis in pancreatic cancer cells, Frontiers in Pharmacology, vol. 10, p. 968, 2019. | |
dc.relation | B. Xiao, J.-Y. Goh, L. Xiao, H. Xian, K.-L. Lim, and Y.-C. Liou, Reac- tive oxygen species trigger
parkin/pink1 pathway-dependent mitophagy by inducing mitochondrial recruitment of parkin,
Journal of Biological Chemistry, vol. 292, no. 40, pp. 16 697-16 708, 2017. | |
dc.relation | W. M. Zawada, G. P. Banninger, J. Thornton, B. Marriott, D. Cantu, A. L. Rachubinski, M. Das, W.
S. T. Griffin, and S. M. Jones, Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium
(mpp+) treated dopaminergic neurons occurs as an nadph oxidase-dependent two-wave cascade,
Journal of neuroinflammation, vol. 8, no. 1, pp. 1-13, 2011 | |
dc.relation | A. Macedo-Márquez, La producción de especies reactivas de oxígeno (eros) en las
mitocondrias de saccharomyces cerevisiae, TIP Revista Especializada en Ciencias QuímicoBiológicas, vol. 15, no. 2, pp. 97-103, 2012. | |
dc.relation | A. Singh, P. Verma, A. Raju, and K. P. Mohanakumar, Nimodipine attenuates the parkinsonian
neurotoxin, mptp-induced changes in the calcium binding proteins, calpain and calbindin, Journal
of Chemical Neuroanatomy, vol. 95, pp. 89-94, 2019. | |
dc.relation | G. E. Meredith, S. Totterdell, J. A. Potashkin, and D. J. Surmeier, Modeling pd pathogenesis in
mice: advantages of a chronic mptp protocol, Parkinsonism & related disorders, vol. 14, pp. S112-S115, 2008. | |
dc.relation | S. Gandhi, A. Wood-Kaczmar, Z. Yao, H. Plun-Favreau, E. Deas, K. Klupsch, J. Downward, D. S.
Latchman, S. J. Tabrizi, N. W. Wood et al., Pink1-associated parkinson's disease is caused by
neuronal vulnerability to calcium-induced cell death, Molecular cell, vol. 33, no. 5, pp. 627-638,
2009. | |
dc.relation | V. G. Desai, R. J. Feuers, R. W. Hart, and S. F. Ali, Mpp+-induced neurotoxicity in mouse is agedependent: evidenced by the selective inhibition of complexes of electron transport, Brain
research, vol. 715, no. 1-2, pp. 1-8, 1996. | |
dc.relation | ] T. N. Martinez and J. T. Greenamyre, Toxin models of mitochondrial dysfunction in parkinson's
disease, Antioxidants & redox signaling, vol. 16, no. 9, pp. 920-934, 2012. | |
dc.relation | W.-T. Huang, M.-H. Chan, X. Chen, M. Hsiao, and R.-S. Liu, Theranos- tic nanobubble
encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy,
Theranostics, vol. 10, no. 2, p. 782, 2020 | |
dc.relation | D. Miljkovic, M. Momcilovic, I. Stojanovic, S. Stosic-Grujicic, Z. Ra- mic, and M. MostaricaStojkovic, Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro, Journal of
neuroscience research, vol. 85, no. 16, pp. 3598-3606, 2007. | |
dc.relation | A. N. MacMahon Copas, S. F. McComish, J. M. Fletcher, and M. A. Caldwell, The pathogenesis
of parkinson's disease: a complex inter- play between astrocytes, microglia, and t lymphocytes?
Frontiers in Neurology, vol. 12, p. 666737, 2021. | |
dc.relation | X. Li, W. Wang, J. Yan, and F. Zeng, Glutamic acid transporters: targets for neuroprotective
therapies in parkinson's disease, Frontiers in Neuroscience, vol. 15, p. 678154, 2021. | |
dc.relation | E. Pajarillo, A. Digman, I. Nyarko-Danquah, D.-S. Son, K. F. Soliman, M. Aschner, and E. Lee,
Astrocytic transcription factor rest upregula- tes glutamate transporter eaat2, protecting
dopaminergic neurons from manganese-induced excitotoxicity, Journal of Biological Chemistry, vol.
297, no. 6, 2021. | |
dc.relation | G. M. Parkin, M. Udawela, A. Gibbons, and B. Dean, Glutamate trans- porters, eaat1 and eaat2,
are potentially important in the pathophysiology and treatment of schizophrenia and affective
disorders, World journal of psychiatry, vol. 8, no. 2, p. 51, 2018. | |
dc.relation | J. Wang, F. Wang, D. Mai, and S. Qu, Molecular mechanisms of glutamate toxicity in parkinson's
disease, Frontiers in neuroscience, vol. 14, p. 585584, 2020. | |
dc.relation | Z. Yang and K. K. Wang, Glial fibrillary acidic protein: from inter- mediate filament assembly
and gliosis to neurobiomarker, Trends in neurosciences, vol. 38, no. 6, pp. 364-374, 2015 | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Evaluation of gene therapies for the treatment of Parkinsons disease using nanostructured vehicles and CRISPR/Cas9 | |
dc.type | Trabajo de grado - Maestría | |