dc.contributorBloch Morel, Natasha Ivonne
dc.contributorReyes Barrios, Luis Humberto
dc.contributorBriceño Triana, Juan Carlos
dc.contributorAlbarracín, Sonia
dc.contributorGenética y genómica del comportamiento
dc.creatorEsmeral Lascano, Natalia Paola
dc.date.accessioned2023-08-08T15:56:22Z
dc.date.accessioned2023-09-06T23:13:39Z
dc.date.available2023-08-08T15:56:22Z
dc.date.available2023-09-06T23:13:39Z
dc.date.created2023-08-08T15:56:22Z
dc.date.issued2023-08-03
dc.identifierhttp://hdl.handle.net/1992/69364
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726323
dc.description.abstractParkinson's disease (PD) causes loss of motor control, cognitive and behavioral functions due to damage to dopaminergic neurons. In astrocytes, the neurodegenerative process is due to the imbalance in oxidative stress, making this cell type a focus of interest in the development of Parkinson's desease. Currently, treatments for PD are not definitive, they are intended to attenuate symptoms, and have side effects such as dyskinesias. Research has developed new ways to address this disease through gene therapies, which consist of modifying the expression of genes of interest. This project aims to evaluate a gene therapy based on CRISPR-nCas9 and a non-viral vehicle to change the expression of the pink1 gene. The cellular effects will be quantified by means of three tests focused on MAO-B activation, mitochondrial membrane potential and ROS production. The information collected is fundamental for the rational design of more effective therapies for PD. To achieve the objective, a mixed culture of astrocytes, neurons and microglia was generated, which assimilate PD through MPTP toxicity. The recovery of the cells thanks to CRISPRa-pink1-MNP, allowed to decrease the amount of MAO-B, ROS, the released JC-1 monomers, and intracellular calcium. In addition, we obtained a restoration of the basal values of the cytokines IFN-gamma, IL-17A, IL-6, IL-1alpha and IL-1beta and a recovery of the EAAT1 antibody. allowing us to conclude that the pink1 gene is of great value to treat and counteract cellular symptoms of Parkinson's together with the vehicle made up of the magnetic nanoparticle.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relationD. G. Standaert, M. H. Saint-Hilaire, and C. A. Thomas, Parkinson S Disease Handbook, The American Parkinson Disease Association, vol. 2, no. 3, pp. 69-73, 2018.
dc.relationR. Martínez-Fernández, A. Sánchez-Ferro, J. A. Obeso et al., Actualización en la enfermedad de parkinson, Revista Médica Clínica Las Condes, vol. 27, no. 3, pp. 363-379, 2016.
dc.relation. Román Benticuaga, M. Domínguez, D. T. Aire, and P. María, Arteterapia para enfermos con alzhéimer, Arteterapia para enfermos con Alzhéimer, pp. 1-278, 2018.
dc.relationF. Stocchi, L. Vacca, S. Ruggieri, and C. W. Olanow, Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study, Archives of neurology, vol. 62, no. 6, pp. 905-910, 2005.
dc.relationT. Wirth, N. Parker, and S. Yl a-Herttuala, History of gene therapy, Gene, vol. 525, no. 2, pp.162-169, 2013.
dc.relationV. Sudhakar and R. M. Richardson, Gene therapy for neurodegenerative diseases, Neurotherapeutics, vol. 16, no. 1, pp. 166-175, 2019.
dc.relationH. D. E. Booth, W. D. Hirst, and R. Wade-Martins, The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis. Trends in neurosciences, vol. 40, no. 6, pp. 358-370, jun 2017
dc.relationA. A. Adriana, A. Santamaría, and M. K. Fainstein, MODELOS NEUROTÓXICOS DE LA ENFERMEDAD DE PARKINSON Y DISFUNCIÓN MITOCONDRIAL *, vol. 29, no. 3, pp. 92-100, 2013.
dc.relationG. M. Halliday and C. H. Stevens, Glia: initiators and progressors of pathology in parkinson's disease, Movement Disorders, vol. 26, no. 1, pp. 6-17, 2011.
dc.relationH.-J. Lee, J.-E. Suk, C. Patrick, E.-J. Bae, J.-H. Cho, S. Rho, D. Hwang, E. Masliah, and S.-J. Lee, Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies, Journal of Biological Chemistry, vol. 285, no. 12, pp. 9262-9272, 2010.
dc.relationX.-L. Gu, C.-X. Long, L. Sun, C. Xie, X. Lin, and H. Cai, Astrocytic expression of parkinson¿s diseaserelated a53t alpha-synuclein causes neu- rodegeneration in mice, Molecular brain, vol. 3, no. 1, pp. 1-16, 2010.
dc.relationC. M. Bantle, W. D. Hirst, A. Weihofen, and E. Shlevkov, Mitochondrial dysfunction in astrocytes: a role in parkinson's disease Frontiers in Cell and Developmental Biology, vol. 8, p. 608026, 2021.
dc.relationS. Y.-Y. Pang, P. W.-L. Ho, H.-F. Liu, C.-T. Leung, L. Li, E. E. S. Chang, D. B. Ramsden, and S.-L. Ho, The interplay of aging, genetics and environmental factors in the pathogenesis of parkinson's disease, Translational Neurodegeneration, vol. 8, pp. 1-11, 2019.
dc.relationA. M. Pickrell and R. J. Youle, The roles of pink1, parkin, and mitochondrial fidelity in parkinson's disease, Neuron, vol. 85, no. 2, pp. 257-273, 2015.
dc.relationP. M. Rappold and K. Tieu, Astrocytes and therapeutics for parkinson's disease, Neurotherapeutics, vol. 7, no. 4, pp. 413-423, 2010.
dc.relationJ. W. Langston and I. Irwin, Mptp: current concepts and controversies, Clinical neuropharmacology, vol. 9, no. 6, pp. 485-507, 1986.
dc.relationR. E. Heikkila, B.-A. Sieber, L. Manzino, and P. K. Sonsalla, Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (mptp) in the mouse, Molecular and Chemical Neuropathology, vol. 10, pp. 171-183, 1989.
dc.relationL. S. Forno, L. E. DeLanney, I. Irwin, D. Di Monte, and J. W. Langston, Astrocytes and parkinson's disease, Progress in brain research, vol. 94, pp. 429-436, 1992.
dc.relationD. Huang, J. Xu, J. Wang, J. Tong, X. Bai, H. Li, Z. Wang, Y. Huang, Y. Wu, M. Yu et al., Dynamic changes in the nigrostriatal pathway in the mptp mouse model of parkinson's disease, Parkinson's disease, vol. 2017, 2017.
dc.relationH. Deng, J. Jankovic, Y. Guo, W. Xie, and W. Le, Small interfering rna targeting the pink1 induces apoptosis in dopaminergic cells sh-sy5y, Biochemical and biophysical research communications, vol. 337, no. 4, pp. 1133-1138, 2005.
dc.relationA. Wood-Kaczmar, S. Gandhi, Z. Yao, A. S. Abramov, E. A. Miljan, G. Keen, L. Stanyer, I. Hargreaves, K. Klupsch, E. Deas et al., Pink1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons, PloS one, vol. 3, no. 6, p. e2455, 2008.
dc.relation] C. A. Gautier, T. Kitada, and J. Shen, Loss of pink1 causes mitochon- drial functional defects and increased sensitivity to oxidative stress, Proceedings of the National Academy of Sciences, vol. 105, no. 32, pp. 11 364-11 369, 2008.
dc.relationJ. W. Pridgeon, J. A. Olzmann, L.-S. Chin, and L. Li, Pink1 protects against oxidative stress by phosphorylating mitochondrial chaperone trap1, PLoS biology, vol. 5, no. 7, p. e172, 2007.
dc.relationC. Shen, W. Xian, H. Zhou, L. Chen, and Z. Pei, Potential protective effects of autophagy activated in mpp+ treated astrocytes, Experimental and therapeutic medicine, vol. 12, no. 5, pp. 2803-2810, 2016.
dc.relationC. Shundo, H. Zhang, T. Nakanishi, and T. Osaka, Cytotoxicity evaluation of magnetite (fe3o4) nanoparticles in mouse embryonic stem cells, Colloids and Surfaces B: Biointerfaces, vol. 97, pp. 221-225, 2012.
dc.relationT. L. Nguyen, T. H. Nguyen, and D. H. Nguyen, Development and in vitro evaluation of liposomes using soy lecithin to encapsulate paclitaxel, International journal of biomaterials, vol. 2017, 2017.
dc.relationM. Arsianti, M. Lim, C. P. Marquis, and R. Amal, Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery, Langmuir, vol. 26, no. 10, pp. 7314-7326, 2010.
dc.relationL. Qi, L. Wu, S. Zheng, Y. Wang, H. Fu, and D. Cui, Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of sirna, Biomacromolecules, vol. 13, no. 9, pp. 2723-2730, 2012.
dc.relationJ. Cifuentes, S. Cifuentes-Almanza, P. Ruiz Puentes, V. Quezada, A. F. González Barrios, M.-A. Calderón-Peláez, M. L. Velandia-Romero, M. Rafat, C. Muñoz-Camargo, S. L. Albarracín et al., Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of parkinson's disease, Frontiers in Bioengineering and Biotechnology, vol. 11, p. 1181842, 2023.
dc.relationJ. Bi, X.-b. Wang, L. Chen, S. Hao, L.-j. An, B. Jiang, and L. Guo, Catalpol protects mesencephalic neurons against mptp induced neurotoxicity via attenuation of mitochondrial dysfunction and maob activity, Toxicology in Vitro, vol. 22, no. 8, pp. 1883-1889, 2008.
dc.relationW. J. Nicklas, S. K. Youngster, M. V. Kindt, and R. E. Heikkila, Iv. mptp, mpp+ and mitochondrial function, Life sciences, vol. 40, no. 8, pp. 721-729, 1987.
dc.relationW. Brooks, M. Jarvis, and G. Wagner, Astrocytes as a primary locus for the conversion mptp into mpp+, Journal of neural transmission, vol. 76, pp. 1-12, 1989.
dc.relationC. Zhao, R. He, M. Shen, F. Zhu, M. Wang, Y. Liu, H. Chen, X. Li, and R. Qin, Pink1/parkinmediated mitophagy regulation by reactive oxygen species alleviates rocaglamide a-induced apoptosis in pancreatic cancer cells, Frontiers in Pharmacology, vol. 10, p. 968, 2019.
dc.relationB. Xiao, J.-Y. Goh, L. Xiao, H. Xian, K.-L. Lim, and Y.-C. Liou, Reac- tive oxygen species trigger parkin/pink1 pathway-dependent mitophagy by inducing mitochondrial recruitment of parkin, Journal of Biological Chemistry, vol. 292, no. 40, pp. 16 697-16 708, 2017.
dc.relationW. M. Zawada, G. P. Banninger, J. Thornton, B. Marriott, D. Cantu, A. L. Rachubinski, M. Das, W. S. T. Griffin, and S. M. Jones, Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (mpp+) treated dopaminergic neurons occurs as an nadph oxidase-dependent two-wave cascade, Journal of neuroinflammation, vol. 8, no. 1, pp. 1-13, 2011
dc.relationA. Macedo-Márquez, La producción de especies reactivas de oxígeno (eros) en las mitocondrias de saccharomyces cerevisiae, TIP Revista Especializada en Ciencias QuímicoBiológicas, vol. 15, no. 2, pp. 97-103, 2012.
dc.relationA. Singh, P. Verma, A. Raju, and K. P. Mohanakumar, Nimodipine attenuates the parkinsonian neurotoxin, mptp-induced changes in the calcium binding proteins, calpain and calbindin, Journal of Chemical Neuroanatomy, vol. 95, pp. 89-94, 2019.
dc.relationG. E. Meredith, S. Totterdell, J. A. Potashkin, and D. J. Surmeier, Modeling pd pathogenesis in mice: advantages of a chronic mptp protocol, Parkinsonism & related disorders, vol. 14, pp. S112-S115, 2008.
dc.relationS. Gandhi, A. Wood-Kaczmar, Z. Yao, H. Plun-Favreau, E. Deas, K. Klupsch, J. Downward, D. S. Latchman, S. J. Tabrizi, N. W. Wood et al., Pink1-associated parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death, Molecular cell, vol. 33, no. 5, pp. 627-638, 2009.
dc.relationV. G. Desai, R. J. Feuers, R. W. Hart, and S. F. Ali, Mpp+-induced neurotoxicity in mouse is agedependent: evidenced by the selective inhibition of complexes of electron transport, Brain research, vol. 715, no. 1-2, pp. 1-8, 1996.
dc.relation] T. N. Martinez and J. T. Greenamyre, Toxin models of mitochondrial dysfunction in parkinson's disease, Antioxidants & redox signaling, vol. 16, no. 9, pp. 920-934, 2012.
dc.relationW.-T. Huang, M.-H. Chan, X. Chen, M. Hsiao, and R.-S. Liu, Theranos- tic nanobubble encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy, Theranostics, vol. 10, no. 2, p. 782, 2020
dc.relationD. Miljkovic, M. Momcilovic, I. Stojanovic, S. Stosic-Grujicic, Z. Ra- mic, and M. MostaricaStojkovic, Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro, Journal of neuroscience research, vol. 85, no. 16, pp. 3598-3606, 2007.
dc.relationA. N. MacMahon Copas, S. F. McComish, J. M. Fletcher, and M. A. Caldwell, The pathogenesis of parkinson's disease: a complex inter- play between astrocytes, microglia, and t lymphocytes? Frontiers in Neurology, vol. 12, p. 666737, 2021.
dc.relationX. Li, W. Wang, J. Yan, and F. Zeng, Glutamic acid transporters: targets for neuroprotective therapies in parkinson's disease, Frontiers in Neuroscience, vol. 15, p. 678154, 2021.
dc.relationE. Pajarillo, A. Digman, I. Nyarko-Danquah, D.-S. Son, K. F. Soliman, M. Aschner, and E. Lee, Astrocytic transcription factor rest upregula- tes glutamate transporter eaat2, protecting dopaminergic neurons from manganese-induced excitotoxicity, Journal of Biological Chemistry, vol. 297, no. 6, 2021.
dc.relationG. M. Parkin, M. Udawela, A. Gibbons, and B. Dean, Glutamate trans- porters, eaat1 and eaat2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders, World journal of psychiatry, vol. 8, no. 2, p. 51, 2018.
dc.relationJ. Wang, F. Wang, D. Mai, and S. Qu, Molecular mechanisms of glutamate toxicity in parkinson's disease, Frontiers in neuroscience, vol. 14, p. 585584, 2020.
dc.relationZ. Yang and K. K. Wang, Glial fibrillary acidic protein: from inter- mediate filament assembly and gliosis to neurobiomarker, Trends in neurosciences, vol. 38, no. 6, pp. 364-374, 2015
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEvaluation of gene therapies for the treatment of Parkinsons disease using nanostructured vehicles and CRISPR/Cas9
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución