dc.contributorNúñez Castro, Haydemar María
dc.contributorCOMIT
dc.creatorÁlvarez López, María Sofía
dc.date.accessioned2023-07-25T20:45:17Z
dc.date.accessioned2023-09-06T23:09:12Z
dc.date.available2023-07-25T20:45:17Z
dc.date.available2023-09-06T23:09:12Z
dc.date.created2023-07-25T20:45:17Z
dc.date.issued2023-07-16
dc.identifierhttp://hdl.handle.net/1992/68749
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726247
dc.description.abstractTras la primera detección de ondas gravitacionales (GWs), las colaboraciones LIGO y Virgo iniciaron un nuevo campo de la astronomía al proporcionar una nueva forma de entender el Universo. A pesar de haber alcanzado sensibilidades capaces de detectar la amplitud extremadamente pequeña de las ondas gravitacionales, los datos de los detectores LIGO y Virgo contienen frecuentes ráfagas de ruido transitorio no Gaussiano, comúnmente conocidas como "glitches", que a menudo imitan o se solapan con las señales de ondas gravitacionales. Dada la mayor tasa de eventos de GWs esperada en el actual periodo de observación (O4), que comenzó en mayo de 2023, el proceso de selección de candidatos a GWs, incluida la identificación de glitches que se solapan con GWs o son morfológicamente similares a ellas, requiere una mayor automatización. Este trabajo desarrolla GSpyNetTree, el "Gravity Spy Convolutional Neural Network Decision Tree": un clasificador multi-CNN multi-etiqueta que identifica con precisión los "glitches" presentes en cada detector de GWs en el momento de una GW candidata. GSpyNetTree ha sido entrenada para ser robusta frente a una amplia gama de ruido de fondo, nuevas fuentes de "glitches" y la probable aparición de "glitches" y GWs solapados.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Observation of Gravitational Waves from a Binary Black Hole Merger», Phys. Rev. Lett. 116, 061102 (2016).
dc.relationJ. McIver y D. H. Shoemaker, «Discovering gravitational waves with Advanced LIGO», Contemporary Physics 61, 229-255 (2020).
dc.relationM. Zevin et al., «Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science», Classical and Quantum Gravity 34, arXiv:1611.04596 [astro-ph, physics:gr-qc, physics:physics], 064003 (2017).
dc.relationB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GW150914: The Advanced LIGO Detectors in the Era of First Discoveries», Phys. Rev. Lett. 116, 131103 (2016).
dc.relationB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs», en, 10.1103/PhysRevX.9.031040.
dc.relationB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run», en, 10.1103/PhysRevX.11.021053.
dc.relationB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration and KAGRA Collaboration), «GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run», en, 10.48550/arXiv.2111.03606.
dc.relationLIGO Scientific Collaboration and Virgo Collaboration, LIGO Laboratory at Caltech and MIT.
dc.relationP. R. Saulson, Fundamentals of interferometric gravitational wave detectors (World Scientific, 1994).
dc.relationThe LIGO Scientific Collaboration, What is an interferometer?
dc.relationJ. Harms, «Terrestrial Gravity Fluctuations», Living Reviews in Relativity 22, arXiv:1507.05850 [gr-qc], 6 (2019).
dc.relationThe LIGO Scientific Collaboration and the Virgo Collaboration, «Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914», Classical and Quantum Gravity 33, arXiv:1602.03844 [astro-ph, physics:gr-qc, physics:physics], 134001 (2016).
dc.relationS. Anderson, K. Burtnyk y J. Kanner, LIGO-M1000066-v27: LIGO Data Management Plan, 2022.
dc.relationB. Berger, «Identification and mitigation of Advanced LIGO noise sources», Journal of Physics: Conference Series 957, 012004 (2018)
dc.relationD. Davis et al., «LIGO Detector Characterization in the Second and Third Observing Runs», Classical and Quantum Gravity 38, arXiv:2101.11673 [astro-ph, physics:gr-qc], 135014 (2021).
dc.relationJ. S. Areeda et al., LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO Scientific Collaboration, arXiv:1611.01089 [astro-ph, physics:gr-qc], nov. de 2016.
dc.relationJarov, S. et al., «A new method to distinguish gravitational-wave signals from detector glitches with Gravity Spy».
dc.relationS. Alvarez-Lopez et al., GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates, 2023.
dc.relationA. Geron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : 2nd ed., https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ (O'Reilly Media, Inc., Mumbai, 2020).
dc.relationA. C. Wilson et al., The Marginal Value of Adaptive Gradient Methods in Machine Learning, 2018.
dc.relationD. Masters y C. Luschi, Revisiting Small Batch Training for Deep Neural Networks, 2018.
dc.relationIBM, What are convolutional neural networks?
dc.relationLIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL), 2018.
dc.relationS. Husa et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal», Phys. Rev. D 93, 044006 (2016).
dc.relationS. Khan et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era», Phys. Rev. D 93, 044007 (2016).
dc.relationPace A, Prestegard T, Moe B and Stephens B, «GraceDB Gravitational-Wave Candidate Event Database», https://gracedb.ligo.org/ (2020).
dc.relationThe LIGO Scientific Collaboration and The Virgo Collaboration, «LIGO/Virgo Alert System (LVAlert)»
dc.relationM. Tan y Q. V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2020.
dc.relationC. Szegedy et al., «Rethinking the Inception Architecture for Computer Vision», en 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), págs. 2818-2826.
dc.relationC. Szegedy et al., «Going deeper with convolutions», en 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), págs. 1-9.
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleGSpyNetTree: Un clasificador de señales astrofísicas y ruido de detector para candidatos de ondas gravitacionales de LIGO-Virgo
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución