dc.contributor | Marañón León, Edgar Alejandro | |
dc.creator | Méndez Galvis, Juan Andrés | |
dc.date.accessioned | 2027-08-04 | |
dc.date.accessioned | 2023-09-06T23:08:52Z | |
dc.date.available | 2027-08-04 | |
dc.date.available | 2023-09-06T23:08:52Z | |
dc.date.created | 2027-08-04 | |
dc.date.issued | 2023-08-02 | |
dc.identifier | http://hdl.handle.net/1992/69259 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726243 | |
dc.description.abstract | As the digitization of the industry advances, the skillset required for mechanical engineers to tackle contemporary challenges expands correspondingly. This thesis presents a comprehensive overview of Reinforcement Learning (RL) and explores its potential applications in resolving mechanical engineering problems. The work initiates with a discussion on the importance of RL applications for mechanical engineers. Subsequently, a detailed summary of the fundamental aspects of RL is provided, acquainting readers with the field's nomenclature, primary algorithms, and core concepts. A methodology is then introduced for translating mechanical engineering problems into RL problems. As part of this study, we also developed an open-source software to establish a framework for creating and solving RL problems. Finally, three distinct mechanical problems were formulated and resolved using RL algorithms, with the results compared against traditional solutions. This endeavor illuminates the potential of RL as a viable tool for advancing mechanical engineering solutions. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería Mecánica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Mecánica | |
dc.relation | Altun, Y., & Bas¸er, E. (2016). Temperature control of the electrically heated oven production system by using ziegler-nichols method. | |
dc.relation | Amini, A. (2022). Mit 6.s191: Deep reinforcement learning. Youtube. https : / / www.youtube.com/watch?v=-WbN61qtTGQ | |
dc.relation | Anfu, G., Zhang, S., Zheng, W., & Yanhua, D. (2020). An autonomous path planning model for unmanned ships based on deep reinforcement learning. Sensors, 20,426. https://doi.org/10.3390/s20020426 | |
dc.relation | DeepMind. (2022). https://www.deepmind.com | |
dc.relation | Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J.,Sidor, S., Wu, Y., & Zhokhov, P. (2017). Openai baselines. https://github.com/openai/baselines | |
dc.relation | Einicke, K. (2021). Mixture ratio and combustion chamber pressure control of an expanderbleed rocket engine with reinforcement learning (Doctoral dissertation). | |
dc.relation | Fridman, L. (2019). Mit 6.s091: Introduction to deep reinforcement learning (deep rl). Youtube. https://www.youtube.com/watch?v=zR11FLZ-O9M&t=876s | |
dc.relation | Han, X. (2022). A mathematical introduction to reinforcement learning. https://cims.nyu.edu/¿donev/Teaching/WrittenOral/Projects/XintianHan-WrittenAndOral.pdf | |
dc.relation | Hui, J. (2022). Rl ¿ reinforcement learning algorithms comparison. https://jonathan-hui.medium.com/rl-reinforcement-learning-algorithms-comparison-76df90f180cf | |
dc.relation | integrate.ai. (2018). What is model-based reinforcement learning? https://medium.com/the-official-integrate-ai-blog/understanding-reinforcement-learning-93d4e34e5698 | |
dc.relation | Kuantama, E., Vesselenyi, T., Dzitac, S., & Tarca, R. (2017). Pid and fuzzy-pid control model for quadcopter attitude with disturbance parameter. International Journal of Computers, Communications and Control, 12, 519¿532. https://doi.org/10.15837/ijccc.2017.4.2962 | |
dc.relation | Lynch, S. (2022). The state of ai in 9 charts. https://hai.stanford.edu/news/state-ai-9-charts | |
dc.relation | Mnih, V., Kavukcuglu, K., Silver, D., Antonoglou, I., Wierstra, D., & Riedmiller, M.(2022). Playing atari with deep reinforcement learning. https://www.cs.toronto.edu/¿vmnih/docs/dqn.pdf | |
dc.relation | OpenAI. (2022). https://openai.com | |
dc.relation | Sutton, R., & Barto, A. (2018). Reinforcement learning, second edition: An introduction. MIT Press. https://books.google.com.co/books?id=uWV0DwAAQBAJ | |
dc.relation | Vitay, J. (2017). Deep reinforcment learning. https://julien-vitay.net/deeprl/ActorCritic.html | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | The use of deep reinforcement learning for aiding in the solution of mechanical engineering problems | |
dc.type | Trabajo de grado - Pregrado | |