dc.contributorMarañón León, Edgar Alejandro
dc.creatorMéndez Galvis, Juan Andrés
dc.date.accessioned2027-08-04
dc.date.accessioned2023-09-06T23:08:52Z
dc.date.available2027-08-04
dc.date.available2023-09-06T23:08:52Z
dc.date.created2027-08-04
dc.date.issued2023-08-02
dc.identifierhttp://hdl.handle.net/1992/69259
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726243
dc.description.abstractAs the digitization of the industry advances, the skillset required for mechanical engineers to tackle contemporary challenges expands correspondingly. This thesis presents a comprehensive overview of Reinforcement Learning (RL) and explores its potential applications in resolving mechanical engineering problems. The work initiates with a discussion on the importance of RL applications for mechanical engineers. Subsequently, a detailed summary of the fundamental aspects of RL is provided, acquainting readers with the field's nomenclature, primary algorithms, and core concepts. A methodology is then introduced for translating mechanical engineering problems into RL problems. As part of this study, we also developed an open-source software to establish a framework for creating and solving RL problems. Finally, three distinct mechanical problems were formulated and resolved using RL algorithms, with the results compared against traditional solutions. This endeavor illuminates the potential of RL as a viable tool for advancing mechanical engineering solutions.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherIngeniería Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Mecánica
dc.relationAltun, Y., & Bas¸er, E. (2016). Temperature control of the electrically heated oven production system by using ziegler-nichols method.
dc.relationAmini, A. (2022). Mit 6.s191: Deep reinforcement learning. Youtube. https : / / www.youtube.com/watch?v=-WbN61qtTGQ
dc.relationAnfu, G., Zhang, S., Zheng, W., & Yanhua, D. (2020). An autonomous path planning model for unmanned ships based on deep reinforcement learning. Sensors, 20,426. https://doi.org/10.3390/s20020426
dc.relationDeepMind. (2022). https://www.deepmind.com
dc.relationDhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J.,Sidor, S., Wu, Y., & Zhokhov, P. (2017). Openai baselines. https://github.com/openai/baselines
dc.relationEinicke, K. (2021). Mixture ratio and combustion chamber pressure control of an expanderbleed rocket engine with reinforcement learning (Doctoral dissertation).
dc.relationFridman, L. (2019). Mit 6.s091: Introduction to deep reinforcement learning (deep rl). Youtube. https://www.youtube.com/watch?v=zR11FLZ-O9M&t=876s
dc.relationHan, X. (2022). A mathematical introduction to reinforcement learning. https://cims.nyu.edu/¿donev/Teaching/WrittenOral/Projects/XintianHan-WrittenAndOral.pdf
dc.relationHui, J. (2022). Rl ¿ reinforcement learning algorithms comparison. https://jonathan-hui.medium.com/rl-reinforcement-learning-algorithms-comparison-76df90f180cf
dc.relationintegrate.ai. (2018). What is model-based reinforcement learning? https://medium.com/the-official-integrate-ai-blog/understanding-reinforcement-learning-93d4e34e5698
dc.relationKuantama, E., Vesselenyi, T., Dzitac, S., & Tarca, R. (2017). Pid and fuzzy-pid control model for quadcopter attitude with disturbance parameter. International Journal of Computers, Communications and Control, 12, 519¿532. https://doi.org/10.15837/ijccc.2017.4.2962
dc.relationLynch, S. (2022). The state of ai in 9 charts. https://hai.stanford.edu/news/state-ai-9-charts
dc.relationMnih, V., Kavukcuglu, K., Silver, D., Antonoglou, I., Wierstra, D., & Riedmiller, M.(2022). Playing atari with deep reinforcement learning. https://www.cs.toronto.edu/¿vmnih/docs/dqn.pdf
dc.relationOpenAI. (2022). https://openai.com
dc.relationSutton, R., & Barto, A. (2018). Reinforcement learning, second edition: An introduction. MIT Press. https://books.google.com.co/books?id=uWV0DwAAQBAJ
dc.relationVitay, J. (2017). Deep reinforcment learning. https://julien-vitay.net/deeprl/ActorCritic.html
dc.rightsAtribución 4.0 Internacional
dc.rightsAl consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleThe use of deep reinforcement learning for aiding in the solution of mechanical engineering problems
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución