dc.contributorMiscione, Gian Pietro
dc.contributorZapata Rivera, Jhon Enrique
dc.contributorComputational Bio- Organic Chemistry Bogotá
dc.creatorHayek Orduz, Yasser
dc.date.accessioned2023-07-12T15:10:03Z
dc.date.accessioned2023-09-06T23:07:56Z
dc.date.available2023-07-12T15:10:03Z
dc.date.available2023-09-06T23:07:56Z
dc.date.created2023-07-12T15:10:03Z
dc.date.issued2020-06-12
dc.identifierhttp://hdl.handle.net/1992/68369
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726226
dc.description.abstractLa estereoselectividad es un factor crucial en la síntesis de compuestos biológicamente activos, y los auxiliares quirales desempeñan un papel fundamental en el control de esta propiedad. Se ha demostrado experimentalmente que el uso de 1,3-ditianos como auxiliares quirales permite lograr reacciones estereoselectivas, sin embargo, aún no se comprende completamente su funcionamiento. Con el fin de investigar cómo operan los 1,3-ditianos, se llevaron a cabo cálculos computacionales para estudiar las reacciones de enolización y alquilación utilizando tres auxiliares ditianos denominados Ditiano 1, Ditiano 2 y Ditiano 3. Como resultado, se obtuvieron las superficies de energía potencial correspondientes a los pasos de reacción de los auxiliares. Este estudio contribuye al desarrollo de métodos sintéticos para la obtención de moléculas que requieren el uso de auxiliares quirales en su ruta sintética.
dc.description.abstractStereoselectivity is a crucial factor in the synthesis of biologically active compounds, and chiral auxiliaries play a fundamental role in controlling this property. It has been experimentally demonstrated that the use of 1,3-dithianes as chiral auxiliaries allows for achieving stereoselective reactions. However, their functioning is still not fully understood. In order to investigate how 1,3-dithianes operate, computational calculations were performed to study the enolization and alkylation reactions using three dithiane auxiliaries named Dithiane 1, Dithiane 2, and Dithiane 3. As a result, potential energy surfaces corresponding to the reaction steps of the auxiliaries were obtained. This study contributes to the development of synthetic methods for obtaining molecules that require the use of chiral auxiliaries in their synthetic route.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherQuímica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationOschmann, M.; Holm, L. J.; Pourghasemi-Lati, M.; Verho, O. Synthesis of Elaborate Benzofuran-2-carboxamide Derivatives through a Combination of 8-Aminoquinoline Directed C-H Arylation and Transamidation Chemistry. Molecules 2020, 25 (2), 361. https://doi.org/10.3390/molecules25020361.
dc.relationKhanam, H.; Shamsuzzaman. Bioactive Benzofuran Derivatives: A Review. European Journal of Medicinal Chemistry. Elsevier Masson SAS June 2015, pp 483-504. https://doi.org/10.1016/j.ejmech.2014.11.039.
dc.relationModukuri, R. K.; Choudhary, D.; Gupta, S.; Rao, K. B.; Adhikary, S.; Sharma, T.; Siddiqi, M. I.; Trivedi, R.; Sashidhara, K. V. Benzofuran-Dihydropyridine Hybrids: A New Class of Potential Bone Anabolic Agents. Bioorganic Med. Chem. 2017, 25 (24), 6450-6466. https://doi.org/10.1016/j.bmc.2017.10.018.
dc.relationKumar, S.; Namkung, W.; Verkman, A. S.; Sharma, P. K. Novel 5-Substituted Benzyloxy-2-Arylbenzofuran-3-Carboxylic Acids as Calcium Activated Chloride Channel Inhibitors. Bioorganic Med. Chem. 2012, 20 (14), 4237-4244. https://doi.org/10.1016/j.bmc.2012.05.074.
dc.relationGessner, G.; Heller, R.; Hoshi, T.; Heinemann, S. H. The Amiodarone Derivative 2-Methyl-3-(3,5-Diiodo-4-Carboxymethoxybenzyl)Benzofuran (KB130015) Opens Large-Conductance Ca2+-Activated K+ Channels and Relaxes Vascular Smooth Muscle. Eur. J. Pharmacol. 2007, 555 (2-3), 185-193. https://doi.org/10.1016/j.ejphar.2006.10.053.
dc.relationTaddei, S.; Bruno, R. M. Calcium Channel Blockers. In Encyclopedia of Endocrine Diseases; Elsevier, 2018; pp 689-695. https://doi.org/10.1016/B978-0-12-801238-3.65408-9.
dc.relationToal, C. B.; Meredith, P. A.; Elliott, H. L. Long-Acting Dihydropyridine Calcium-Channel Blockers and Sympathetic Nervous System Activity in Hypertension: A Literature Review Comparing Amlodipine and Nifedipine GITS. Blood Press. 2012, 21 (SUPPL. 1), 3-10. https://doi.org/10.3109/08037051.2012.690615.
dc.relationQing, X.; Lee, X. Y.; De Raeymaeker, J.; Tame, J. R.; Zhang, K. Y.; De Maeyer, M.; Voet, A. R. Pharmacophore Modeling: Advances, Limitations, And Current Utility in Drug Discovery. J. Receptor. Ligand Channel Res. 2014, 7, 81-92. https://doi.org/10.2147/JRLCR.S46843.
dc.relationChristmann, M.; Bräse, S. Asymmetric Synthesis: The Essentials; Wiley-VCH, 2008.
dc.relationDiaz-Muñoz, G.; Miranda, I. L.; Sartori, S. K.; Rezende, D. C.; Alves Nogueira Diaz, M. Use of Chiral Auxiliaries in the Asymmetric Synthesis of Biologically Active Compounds: A Review. Chirality 2019, 31 (10), 776-812. https://doi.org/10.1002/chir.23103.
dc.relationWood, W. W. Chapter 4 Trends in the Chemistry of 1,3- Dithioacetals. Organosulfur Chem. 1995, 1 (C), 133-224. https://doi.org/10.1016/S1099-8268(07)80015-1.
dc.relationYoshimura, Y.; Kumamoto, H.; Baba, A.; Takeda, S.; Tanaka, H. Study on the Reaction Mechanism of C-6 Lithiation of Pyrimidine Nucleosides by Using Lithium Hexamethyldisilazide as a Base; Oxford University Press, 2003.
dc.relationRappoport, Z.; Marek, I. The Chemistry of Organolithium Compounds; John Wiley & Sons, Ltd, 2004. https://doi.org/10.1002/047002111x.
dc.relationCarey, F.; Sundberg, R. Advanced Organic Chemistry. Part B: Reactions and Synthesis. Fourth Edition. Molecules 2001. https://doi.org/10.3390/61201015.
dc.relationHeathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. Acyclic Stereoselection. 7. Stereoselective Synthesis of 2-Alkyl-3-Hydroxy Carbonyl Compounds by Aldol Condensation1. J. Org. Chem. 1980, 45 (6), 1066-1081. https://doi.org/10.1021/jo01294a030.
dc.relationIreland, R. E.; Mueller, R. H.; Willard, A. K. The Ester Enolate Claisen Rearrangement. Stereochemical Control through Stereoselective Enolate Formation. J. Am. Chem. Soc. 1976, 98 (10), 2868-2877. https://doi.org/10.1021/ja00426a033.
dc.relationKnochel, P.; Molander, G. A. Comprehensive Organic Synthesis; 2014.
dc.relationGawley, R. E.; Aubé, J. Chapter 3 Enolate, Azaenolate, and Organolithium Alkylations. Tetrahedron Org. Chem. Ser. 1996, 14 (C), 75-119. https://doi.org/10.1016/S1460-1567(96)80025-0.
dc.relationBernardi, A.; Capelli, A. M.; Cassinari, A.; Comotti, A.; Gennari, C.; Scolastico, C. A Computational Study of the 1,4-Addition of Lithium Enolates to Conjugated Carbonyl Compounds. J. Org. Chem. 1992, 32 (6), 823-826. https://doi.org/10.1021/jo00052a011.
dc.relationPratt, L. M.; Nguyen, S. C.; Thanh, B. T. A Computational Study of Lithium Ketone Enolate Aggregation in the Gas Phase and in THF Solution. J. Org. Chem. 2008, 73 (16), 6086-6091. https://doi.org/10.1021/jo800528y.
dc.relationPratt, L. M.; Van Nguyên, N.; Ramachandran, B. Computational Strategies for Evaluating Barrier Heights for Gas-Phase Reactions of Lithium Enolates. J. Org. Chem. 2005, 70 (11), 4279-4283. https://doi.org/10.1021/jo0503409.
dc.relationMcKee, M. L. A Theoretical Study of Proton Transfer in Lithium Carbonyl and Lithium Enolate Complexes. J. Am. Chem. Soc. 1987, 109 (2), 559-565. https://doi.org/10.1021/ja00236a039.
dc.relationAgami, C. Mise En Evidence d'un Controle Orbitalaire Dans La C-Alkylation Des Centones. Tetrahedron Lett. 1977, 18 (32), 2801-2804. https://doi.org/10.1016/S0040-4039(01)83077-X.
dc.relationHouk, K. N.; Paddon-Row, M. N. Transition Structures for C- and O-Alkylation of Acetaldehyde Enolate. Stereoelectronic Effects and C/O Alkylation Ratios. J. Am. Chem. Soc. 1986, 108 (10), 2659-2662. https://doi.org/10.1021/ja00270a026.
dc.relationCasimir, H. B. G. The Historical Development of Quantum Theory. Contemp. Phys. 1983. https://doi.org/10.1080/00107518308219068.
dc.relationJames.; Foresman, J. B.; Frisch, A. Exploring Chemistry With Electronic Structure Methods. Exploring Chemistry with Electronic Structure Methods. 2013. https://doi.org/10.1002/adma.200400767.
dc.relationHouse, J. Fundamentals of Quantum Chemistry. Choice Rev. Online 2005. https://doi.org/10.5860/choice.42-4658.
dc.relationAtkins, P.; Friedman, R. Molecular Quantum Mechanics Fourth Edition. Oxford Univ. Press New York 2005.
dc.relationLevine, I. N. Quantum Chemistry.
dc.relationCengel, Y. A.; Palm, W. J. Differential Equations for Engineers and Scientists; McGraw Hill, 2013.
dc.relationSeider, W. D.; Lewin, D. R.; Seader, J. D.; Widagdo, S. (Chemical engineer); Gani, R. (Rafiqul); Ng, K. M. Product and Process Design Principles: Synthesis, Analysis, and Evaluation.
dc.relationBiegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; 2010. https://doi.org/10.1137/1.9780898719383.
dc.relationEdgar, T. F.; Himmelblau, D. M.; Lasdon, L. S. Optimization of Chemical Processes; McGraw-Hill, 2001.
dc.relationCaballero, J. A.; Grossmann, I. E. Una Revisión Del Estado Del Arte En Optimización. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial. Elsevier Doyma January 2007, pp 5-23. https://doi.org/10.1016/s1697-7912(07)70188-7.
dc.relationJensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Incorporated, 2016.
dc.relationHehre, W.; Radom, L.; Schleyer, P.; Pople, J. Ab Initio Molecular Theory; Wiley, Ed.; John Wiley & Son, Inc., 1986.
dc.relationDolg, M.; Cao, X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chemical Reviews. American Chemical Society January 2012, pp 403-480. https://doi.org/10.1021/cr2001383.
dc.relationMartin, J. M. L.; Sundermann, A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114 (8), 3408-3420. https://doi.org/10.1063/1.1337864.
dc.relationLewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics: Third Edition 2016; Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-30916-3.
dc.relationLuken, W. Properties of the Fermi Hole in Molecules. Croat. Chem. Acta 1984.
dc.relationHohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864. https://doi.org/10.1103/PhysRev.136.B864.
dc.relationZhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4 (11), 1849-1868. https://doi.org/10.1021/ct800246v.
dc.relationHammer, B.; Hansen, L. B.; Nørskov, J. K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B - Condens. Matter Mater. Phys. 1999, 59 (11), 7413-7421. https://doi.org/10.1103/PhysRevB.59.7413.
dc.relationPerdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
dc.relationKohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133. https://doi.org/10.1103/PhysRev.140.A1133.
dc.relationPerdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45 (23), 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244.
dc.relationGoerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19 (48), 32184-32215. https://doi.org/10.1039/c7cp04913g.
dc.relationReichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition; Wiley-VCH: Weinheim, Germany, 2010. https://doi.org/10.1002/9783527632220.
dc.relationMonard, G.; Rivail, J. L. Solvent Effects in Quantum Chemistry. In Handbook of Computational Chemistry; Springer International Publishing, 2017; pp 727-739. https://doi.org/10.1007/978-3-319-27282-5_15.
dc.relationMarenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. https://doi.org/10.1021/jp810292n.
dc.relationPeng, Q.; Duarte, F.; Paton, R. S. Computing Organic Stereoselectivity-from Concepts to Quantitative Calculations and Predictions. Chemical Society Reviews. 2016. https://doi.org/10.1039/c6cs00573j.
dc.relationJonathan Clayden, Nick Greeves, S. G. W. Organic Chemistry; 2012. https://doi.org/10.1007/s00897010513a.
dc.relationSmith, A. B.; Xian, M. Anion Relay Chemistry: An Effective Tactic for Diversity Oriented Synthesis. J. Am. Chem. Soc. 2006, 128 (1), 66-67. https://doi.org/10.1021/ja057059w.
dc.relationTanaka, F.; Fuji, K. Stereochemistry of the Enolate from Methyl Phenylacetate. Tetrahedron Lett. 1992, 33 (51), 7885-7888. https://doi.org/10.1016/S0040-4039(00)74769-1.
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEstudio computacional de alquilaciones estereoselectivas de enolatos de litio
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución