dc.contributorRivas Hernández, Ricardo Eusebio
dc.contributorCarazzone, Chiara
dc.contributorLópez Muñoz, Gerson Dirceu
dc.contributorEspectrometría Analítica Aplicada
dc.creatorQuijano Palomino, Julian David
dc.date.accessioned2023-08-08T16:56:35Z
dc.date.accessioned2023-09-06T23:06:53Z
dc.date.available2023-08-08T16:56:35Z
dc.date.available2023-09-06T23:06:53Z
dc.date.created2023-08-08T16:56:35Z
dc.date.issued2023-08-07
dc.identifierhttp://hdl.handle.net/1992/69388
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726206
dc.description.abstractDebido a la reducción de las emisiones de gases de efecto invernadero, el aumento en la demanda de alimentos a nivel mundial y la intensificación de los sistemas de cultivo, se ha visto reducida la recaptación de S en las plantas, lo que provoca que disminuyan los factores de crecimiento y desarrollo dada la importancia que el S tiene en las diferentes rutas metabólicas. Por lo anterior, el objetivo de esta investigación fue determinar el contenido de S en una muestra de origen foliar por formación de la molécula diatómica de Sn-S haciendo uso de la técnica de espectroscopía de absorción atómica de fuente continua de alta resolución en modalidad de calentamiento electrotérmico (HR-CS-ETAAS). Se evaluó la importancia del uso de un modificador y de la fuente de estaño sobre la señal analítica y se utilizó el método de calibración no convencional por multi energía (MEC) para realizar su determinación. A su vez, los parámetros correspondientes al programa de calentamiento como las temperaturas de calcinación y atomización fueron optimizados para obtener la mejor sensibilidad y forma de picos en la medida de su absorbancia. Entre los resultados, se lograron encontrar los parámetros óptimos instrumentales del equipo, se determinó que no era necesario el uso de un modificador para obtener señales óptimas de las vibraciones moleculares de Sn-S, que el uso de nanocompositos de Sn pueden permitir la correcta determinación de la señal, y que, utilizando MEC, se obtuvo una concentración de 9644 ± 2541ppm con respecto a los 9600ppm contenidos en un material de referencia (NIST SRM 1573a).
dc.description.abstractDue to the reduction in greenhouse gas emissions, the increased global demand for food, and the intensification of agricultural systems, the uptake of sulfur (S) in plants has been diminished. This reduction in sulfur uptake hampers the growth and development processes, given the crucial role that S plays in various metabolic pathways. Consequently, the primary objective of this research was to determine the sulfur content in a foliar sample by forming the diatomic Sn-S molecule, utilizing the technique of High-Resolution Continuous Source Electrothermal Atomic Absorption Spectroscopy (HR-CS-ETAAS). The study evaluated the significance of using a modifier and the tin source on the analytical signal, employing the unconventional multi-energy calibration method (MEC) for the determination. Additionally, the heating program parameters, such as calcination and atomization temperatures, were optimized to achieve the highest sensitivity and peak shape in the absorbance measurement. The obtained results indicated the successful determination of instrumental parameters for the equipment, demonstrated that the use of a modifier was unnecessary to obtain optimal signals from Sn-S molecular vibrations, and revealed that the application of tin nanocomposites enabled accurate signal determination. Employing the MEC calibration method, a sulfur concentration of 9644 ± 2541 ppm was obtained, in agreement with the 9600ppm content found in a reference material (NIST SRM 1573a).
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relation(1) Ma, Q.; Luo, Y.; Wen, Y.; Hill, P. W.; Chadwick, D. R.; Wu, L.; Jones, D. L. Carbon and Sulphur Tracing from Soil Organic Sulphur in Plants and Soil Microorganisms. Soil Biol. Biochem. 2020, 150, 107971. https://doi.org/10.1016/j.soilbio.2020.107971.
dc.relation(2) Scherer, H. W. Sulphur in Crop Production ¿ Invited Paper. Eur. J. Agron. 2001, 14 (2), 81¿111. https://doi.org/10.1016/S1161-0301(00)00082-4.
dc.relation(3) Romero, L. C.; Aroca, M. Á.; Laureano-Marín, A. M.; Moreno, I.; García, I.; Gotor, C. Cysteine and Cysteine-Related Signaling Pathways in Arabidopsis Thaliana. Mol. Plant 2014, 7 (2), 264¿276. https://doi.org/10.1093/mp/sst168.
dc.relation(4) Narayan, O. P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A. K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2022, 0 (0), 2030082. https://doi.org/10.1080/15592324.2022.2030082.
dc.relation(5) EN 228:2012+A1:2017 Automotive Fuels - Unleaded Petrol - Requirements and Test Methods; 2018.
dc.relation(6) EN-590-22. Automotive Fuels - Diesel - Requirements and Test Methods; 2022.
dc.relation(7) Gao, Y.; Li, X.; Tian, Q.-Y.; Wang, B.-L.; Zhang, W.-H. Sulfur Deficiency Had Different Effects on Medicago Truncatula Ecotypes A17 and R108 in Terms of Growth, Root Morphology and Nutrient Contents. J. Plant Nutr. 2016, 39 (3), 301¿314. https://doi.org/10.1080/01904167.2014.976344.
dc.relation(8) Li, Q.; Gao, Y.; Yang, A. Sulfur Homeostasis in Plants. Int. J. Mol. Sci. 2020, 21 (23), 8926. https://doi.org/10.3390/ijms21238926.
dc.relation(9) Sung, J.; Baek, S.; Kim, J.; X. Kim, Y.; Lee, Y.; Lee, S.; Lee, D.; Jung, H. Responses of Primary Metabolites and Glucosinolates in Sulfur Deficient-Cabbage (Brassica Rapa L. Ssp. Pekinensis). J. Plant Biochem. Physiol. 2018, 06 (04). https://doi.org/10.4172/2329-9029.1000223.
dc.relation(10) Dan, H.; Yang, G.; Zheng, Z.-L. A Negative Regulatory Role for Auxin in Sulphate Deficiency Response in Arabidopsis Thaliana. Plant Mol. Biol. 2007, 63 (2), 221¿235. https://doi.org/10.1007/s11103-006-9084-0.
dc.relation(11) D129, A. Standard Test Method for Sulfur in Petroleum Products (General High Pressure Decomposition Device Method). Annu. Book Stand. 2017.
dc.relation(12) D5504, A. Standard Test Method for Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence. Annu. Book Stand. 2017.
dc.relation(13) Reed, B. The Determination of Sulphur in Plant Material by X-Ray Fluorescence Spectroscopy. J. Sci. Food Agric. 1973, 24 (2), 139¿146. https://doi.org/10.1002/jsfa.2740240205.
dc.relation(14) Gunduz, S.; Akman, S. Determination of Sulphur in Various Vegetables by Solid Sampling High-Resolution Electrothermal Molecular Absorption Spectrometry. Food Chem. 2015, 172, 213¿218. https://doi.org/10.1016/j.foodchem.2014.09.031.
dc.relation(15) Virgilio, A.; Gonçalves, D. A.; McSweeney, T.; Gomes Neto, J. A.; Nóbrega, J. A.; Donati, G. L. Multi-Energy Calibration Applied to Atomic Spectrometry. Anal. Chim. Acta 2017, 982, 31¿36. https://doi.org/10.1016/j.aca.2017.06.040.
dc.relation(16) Historical Development of Continuum Source AAS. In High-Resolution Continuum Source AAS; John Wiley & Sons, Ltd, 2005; pp 1¿4. https://doi.org/10.1002/3527606513.ch1.
dc.relation(17) Schlemmer, G.; Balcaen, L.; Todolí, J. L.; Hinds, M. W. Elemental Analysis: An Introduction to Modern Spectrometric Techniques; 2019.
dc.relation(18) Galbán, J.; Marcos, S. de; Sanz, I.; Ubide, C.; Zuriarrain, J. CCD Detectors for Molecular Absorption Spectrophotometry. A Theoretical and Experimental Study on Characteristics and Performance. Analyst 2010, 135 (3), 564¿569. https://doi.org/10.1039/B919480K.
dc.relation(19) Cadorim, H. R.; Pereira, É. R.; Carasek, E.; Welz, B.; De Andrade, J. B. Determination of Sulfur in Crude Oil Using High-Resolution Continuum Source Molecular Absorption Spectrometry of the SnS Molecule in a Graphite Furnace. Talanta 2016, 146, 203¿208. https://doi.org/10.1016/j.talanta.2015.07.088.
dc.relation(20) Campbell, A. D.; Tioh, N. H. The Determination of Sulphate in Fertilizers by Atomic Absorption Spectrometry. Anal. Chim. Acta 1978, 100, 451¿455. https://doi.org/10.1016/S0003-2670(01)93339-2.
dc.relation(21) Baumbach, G.; Limburg, T.; Einax, J. W. Quantitative Determination of Sulfur by High-Resolution Graphite Furnace Molecular Absorption Spectrometry. Microchem. J. 2013, 106, 295¿299. https://doi.org/10.1016/j.microc.2012.08.011.
dc.relation(22) Huang, M. D.; Becker-Ross, H.; Florek, S.; Abad, C.; Okruss, M. Investigation of High-Resolution Absorption Spectra of Diatomic Sulfides of Group 14 Elements in Graphite Furnace and the Comparison of Their Performance for Sulfur Determination. Spectrochim. Acta - Part B At. Spectrosc. 2017, 135, 15¿21. https://doi.org/10.1016/j.sab.2017.06.012.
dc.relation(23) Baysal, A.; Akman, S. A Practical Method for the Determination of Sulphur in Coal Samples by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry. Talanta 2011, 85 (5), 2662¿2665. https://doi.org/10.1016/j.talanta.2011.08.038.
dc.relation(24) Welz, B.; Sperling, M. Atomic Absorption Spectrometry; Weinheim¿; New York, 1999.
dc.relation(25) Garrido, M. L. Determination of Sulphur in Plant Material. Analyst 1964, 89 (1054), 61¿66. https://doi.org/10.1039/AN9648900061.
dc.relation(26) Guthrie, T. F.; Lowe, L. E. A Comparison of Methods for Total Sulphur Analysis of Tree Foliage. Can. J. For. Res. 1984, 14 (3), 470¿473. https://doi.org/10.1139/x84-086.
dc.relation(27) Novozamsky, I.; van Eck, R.; van der Lee, J. J.; Houba, V. J. G.; Temminghoff, E. Determination of Total Sulphur and Extractable Sulphate in Plant Materials by Inductively¿coupled Plasma Atomic Emission Spectrometry. Commun. Soil Sci. Plant Anal. 1986, 17 (11), 1147¿1157. https://doi.org/10.1080/00103628609367780.
dc.relation(28) Chang, Y.-L.; Hsieh, C.-L.; Huang, Y.-M.; Chiou, W.-L.; Kuo, Y.-H.; Tseng, M.-H. Modified Method for Determination of Sulfur Metabolites in Plant Tissues by Stable Isotope Dilution-Based Liquid Chromatography¿Electrospray Ionization¿Tandem Mass Spectrometry. Anal. Biochem. 2013, 442 (1), 24¿33. https://doi.org/10.1016/j.ab.2013.07.026.
dc.relation(29) Pinkerton, A.; Norrish, K.; Randall, P. J. Determination of Forms of Sulphur in Plant Material by X-Ray Fluorescence Spectrometry. X-Ray Spectrom. 1990, 19 (2), 63¿65. https://doi.org/10.1002/xrs.1300190207.
dc.relation(30) Ozbek, N.; Baysal, A. Determination of Sulfur by High-Resolution Continuum Source Atomic Absorption Spectrometry: Review of Studies over the Last 10 Years. TrAC - Trends Anal. Chem. 2017, 88, 62¿76. https://doi.org/10.1016/j.trac.2016.09.014.
dc.relation(31) Elmobarak, W. F.; Almomani, F. Application of Magnetic Nanoparticles for the Removal of Oil from Oil-in-Water Emulsion: Regeneration/Reuse of Spent Particles. J. Pet. Sci. Eng. 2021, 203, 108591. https://doi.org/10.1016/j.petrol.2021.108591.
dc.relation(32) Khoso, W. A.; Haleem, N.; Baig, M. A.; Jamal, Y. Synthesis, Characterization and Heavy Metal Removal Efficiency of Nickel Ferrite Nanoparticles (NFN¿s). Sci. Rep. 2021, 11 (1), 3790. https://doi.org/10.1038/s41598-021-83363-1.
dc.relation(33) Sayyadnejad, M. A.; Ghaffarian, H. R.; Saeidi, M. Removal of Hydrogen Sulfide by Zinc Oxide Nanoparticles in Drilling Fluid. Int. J. Environ. Sci. Technol. 2008, 5 (4), 565¿569. https://doi.org/10.1007/BF03326054.
dc.relation(34) Lin, Y.; Jin, X.; Khan, N. I.; Owens, G.; Chen, Z. Efficient Removal of As (¿) by Calcined Green Synthesized Bimetallic Fe/Pd Nanoparticles Based on Adsorption and Oxidation. J. Clean. Prod. 2021, 286, 124987. https://doi.org/10.1016/j.jclepro.2020.124987.
dc.relation(35) Bustos, D. E.; Toro, J. A.; Briceño, M.; Rivas, R. E. Use of Slow Atomization Ramp in High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry for the Simultaneous Determination of Cd and Ni in Slurry Powdered Chocolate Samples. Talanta 2022, 247, 123547. https://doi.org/10.1016/j.talanta.2022.123547.
dc.relation(36) Huber, C. S.; Vale, M. G. R.; Welz, B.; Andrade, J. B.; Dessuy, M. B. Investigation of Chemical Modifiers for Sulfur Determination in Diesel Fuel Samples by High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry Using Direct Analysis. Spectrochim. Acta - Part B At. Spectrosc. 2015, 108, 68¿74. https://doi.org/10.1016/j.sab.2015.03.013.
dc.relation(37) Ma, Q.; Hill, P. W.; Chadwick, D. R.; Wu, L.; Jones, D. L. Competition for S-Containing Amino Acids between Rhizosphere Microorganisms and Plant Roots: The Role of Cysteine in Plant S Acquisition. Biol. Fertil. Soils 2021, 57 (6), 825¿836. https://doi.org/10.1007/s00374-021-01572-2.
dc.relation(38) Halle, J. C.; Stern, K. H. Vaporization and Decomposition of Sodium Sulfate. Thermodynamics and Kinetics. J. Phys. Chem. 1980, 84 (13), 1699¿1704. https://doi.org/10.1021/j100450a007.
dc.relation(39) Kowalewska, Z. Feasibility of High-Resolution Continuum Source Molecular Absorption Spectrometry in Flame and Furnace for Sulphur Determination in Petroleum Products. Spectrochim. Acta Part B At. Spectrosc. 2011, 66 (7), 546¿556. https://doi.org/10.1016/j.sab.2011.06.004.
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDeterminación de azufre mediante calibración no convencional "multi-energy" en muestras de origen foliar por formación de la molécula diatómica Sn-S haciendo uso de la técnica de espectroscopía de absorción atómica de fuente continua de alta resolución (HR-CS-AAS)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución