dc.contributorReyes Ortíz, Juan Carlos
dc.contributorJerez Barbosa, Sandra Rocío
dc.contributorBlondet Saavedra, Marcial
dc.contributorTarque Ruiz, Sabino Nicola
dc.contributorCorreal Daza, Juan Francisco Javier
dc.contributorCentro de Investigación en Materiales y Obras Civiles (CIMOC)
dc.creatorRuiz Valencia, Daniel Mauricio
dc.date.accessioned2023-06-06T16:35:33Z
dc.date.accessioned2023-09-06T23:05:50Z
dc.date.available2023-06-06T16:35:33Z
dc.date.available2023-09-06T23:05:50Z
dc.date.created2023-06-06T16:35:33Z
dc.date.issued2023-06-02
dc.identifierhttp://hdl.handle.net/1992/67213
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726183
dc.description.abstractThe Spaniard colonizers of Latin America built constructions using earthen materials, and consequently, adobe and rammed earth became part of the cultural heritage of northern South America. However, these heritage structures have been deteriorating due to the inherent structural vulnerability, mainly caused by earthquakes and moisture. Previous earthquakes have shown that unreinforced earthen buildings are susceptible to seismic damage, resulting in heritage, economic, and human losses. In recent years, research has focused on seismic retrofitting alternatives that included confining wooden/steel elements, steel cables, tie beams, steel tensioners, internal reinforcements, mesh reinforcements, polypropylene bands, etc. Confinement of earthen walls with steel strips was proposed recently and consisted of structural steel plates (101.6 mm width and 6.35 mm thickness) installed on the inner and outer faces of earthen walls (vertically and horizontally) forming a grid. The A36 steel plates are separated a distance between 1000 mm and 1500 mm and are joined with through bolts spaced every 500 mm. Despite the advances in the steel plate retrofitting technique for earthen buildings, design equations are not available, and studies on two-story full-scale specimens are limited, particularly in Colombia. This is an important issue because a large percentage of historic earthen buildings in Colombia have two stories. Therefore, the effectiveness of retrofitting techniques for these cases is not well understood. To address this gap in knowledge, this research project tested large-scale two-story walls or segments retrofitted with steel plates using pseudo-static and dynamic (shake table test) load protocols in one and two directions, respectively. Despite the high variability involved in the mechanical properties of earthen materials and the uncertainty in the interaction between the steel plates and the rammed earth, an analytical model, and an empirical design equation (validated with experimental tests) were proposed to predict the flexural out-of-plane strength of reinforced earthen elements. Additionally, a full-scale two-story rammed-earth wall with openings (0.65 m thickness, 6.20 m height, and 5.95 m length) was subjected to cyclic in-plane shear loads with two MTS actuators. These actuators applied loads until the reparable damage threshold was reached, which corresponds to the point at which the resistance shown in the hysteresis loops began to decrease. Later, the wall was reinforced with steel plates, and the same test protocol was repeated. The experimental results suggested that the in-plane stiffness was restored, and the lateral load capacity was increased by about 200 % on average. Furthermore, the unreinforced wall had a drift capacity of 0.5 %, while the reinforced wall reached a maximum drift of 1.8 %. Finally, two 1:2 scale rammed earth walls (unreinforced and reinforced with steel strips) were tested on a bi-axial shaking table device (X and Y ground motions). Based on the experimental tests, the unreinforced wall presented irreparable damage and high residual drifts at acceleration levels corresponding to a return period of 475 years (PGAy=0.43g). In contrast, the reinforced wall had a better seismic performance with lower damage levels and was highly resilient, withstanding an earthquake greater than the one with a 2500 return period without collapsing (PGAy=0.76g). Therefore, the experimental research conducted suggests that the steel plates reinforcement technique improves the seismic performance of two-story heritage rammed-earth walls while reducing damage and protecting human lives. Confinement with steel plates also reduced early failures and permanent residual drifts, allowed a higher range of non-linear displacements, reduced cracks and damage, and improved out-of-plane stability.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ingeniería
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationAcero E. (2012). Aproximación al comportamiento estructural de edificaciones en tierra de la arquitectura colonial. Consideraciones para el inventario de bienes del Ministerio de Cultura y la norma de sismo resistencia colombiana. Master's thesis, Universidad Nacional De Colombia.
dc.relationAlbrecht P., Hall T. (2003). Atmospheric Corrosion Resistance of Structural Steels. Journal of Materials in Civil Engineering. 15 Issue 1 Feb. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(2)
dc.relationAIS-Asociación Colombiana de Ingeniería Sísmica. (2004). Manual para la rehabilitación de viviendas construidas en adobe y tapia pisada [Manual for the rehabilitation of adobe and rammed-earth buildings].
dc.relationAIS-Asociación Colombiana de Ingeniería Sísmica. Reglamento colombiano de construcción sismo resistente NSR-10 [Colombian earthquake resistant construction regulation NSR-10]. 2010.
dc.relationAIS-Asociación Colombiana de Ingeniería Sísmica. (2017). Norma AIS-610-EP-2017: Evaluación e intervención de edificaciones patrimoniales de uno y dos pisos de Adobe y Tapia Pisada.
dc.relationAIS-Asociación Colombiana de Ingeniería Sísmica. (2015). Consultoría para el diseño, ejecución e interpretación de ensayos experimentales para caracterizar el comportamiento sísmico de elementos estructurales en adobe y tapia pisada con reforzamiento sísmico. Preparado por el Centro de Investigación en Materiales y Obras Civiles-CIMOC para la AIS.
dc.relationAlcaldía Mayor de Bogotá, Decreto-678 (1994). Por el medio del cual se asigna el Tratamiento Especial de Conservación Histórica al Centro Histórico.
dc.relationAlcaldía Mayor de Bogotá, Decreto-326. (1992). Por medio del cual se asigna el tratamiento especial de conservación al Centro Histórico de Santa fe de Bogotá.
dc.relationAngulo F. (2008), Tipologías Arquitectónicas Coloniales y Republicanas: Afinidades y Oposiciones: Cartagena de Indias, Turbaco y Arjona. Bogotá, Universidad Jorge Tadeo Lozano.
dc.relationASTM-American Society for Testing and Materials. (2007). ASTM D422. Standard test method for particle-size analysis of soils.
dc.relationASTM-American Society for Testing and Materials. (2017). ASTM D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
dc.relationASTM-American Society for Testing and Materials. (2017a). ASTM A370-17. Standard test methods and definitions for mechanical testing of steel products.
dc.relationAvila, F., Puertas, E., and Gallego, R. (2020). Characterization of the mechanical and physical properties of unstabilized rammed-earth: A review. Construction and Building Materials, V. 270, 121435.
dc.relationBarbacci N. (2020). Earthen Architecture Valorisation and Underestimation, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 44, no. M-1: 1073-1080.
dc.relationBattistelli A. (2005). Tecnología y patrimonio en tierra cruda en Colombia: El caso de Barichara en Santander. World in Progress 1 (Torino, Politecnico di Torino, 2005).
dc.relationBlondet M., Torrealva D., Villa-García G., Ginocchio F., Madueño I. (2005). Using industrial materials for the construction of safe Adobe houses in seismic areas. Proceedings of SismoAdobe 2005. Pontificia Universidad Católica del Perú.
dc.relationBlondet M., D. Torrealva, F. Ginocchio, J. Vargas, J. Velásquez. (2006). Seismic reinforcement of adobe houses using external polymer mesh, in: 8th US Natl. Conf. Earthq. Eng. 2006, 2006, pp. 4223-4232
dc.relationBlondet, M., Vargas, J., Tarque, N., and Iwaki, C. (2011). Construcción sismorresistente en tierra: la gran experiencia contemporánea de la Pontificia Universidad Católica del Perú. Informes de La Construcción, 63(523), 41-50. https://doi.org/10.3989/ic.10.017
dc.relationBlondet M., Villa Garcia G., Brzev S., Rubiños Á. (2011a). Earthquake-resistant construction of adobe buildings: a tutorial, EERI/IAEE World Hous. Encycl. 56, 13-21.
dc.relationBossio S., Blondet M., Rihal S. (2013). Seismic behavior and shaking direction influence on adobe wall structures reinforced with geogrid, Earthq. Spectra. 29. 59-84, https://doi.org/10.1193/1.4000096
dc.relationBui, Q. B., Morel J. C., Venkatarama B. V., and Ghayad, W. (2009). Durability of rammed-earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5), 912-919. https://doi.org/10.1016/j.buildenv.2008.07.001
dc.relationBui T.-L., Bui T.-T., Bui Q.-B., Nguyen X.-H., and Limam A. (2020). Out-of-plane behavior of rammed-earth walls under seismic loading: Finite element simulation. Structures, 24, 191-208. https://doi.org/10.1016/j.istruc.2020.01.009
dc.relationChang, G. R., Fiori, C. M., and Schexnayder, S. (2013). Rammed-earth: Construction lessons from experience. Pract. Period. Struct. Des. Constr. Volume 18, Issue 3. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000152
dc.relationCharleson A., Blondet M., (2012). Seismic reinforcement for adobe houses with straps from used car tires, Earthq. Spectra. 28. 511-530, https://doi.org/10.1193/1.4000014
dc.relationCharnov A. (2011). one hundred Years of Site Maintenance and Repair: Conservation of Earthen Archaeological Sites in the American Southwest, Journal of Architectural Conservation 17, no. 2: 59-75.
dc.relationComisión de Construcción Patrimonial. (2013). Norma NCh-3332 Estructuras, Intervención de construcciones patrimoniales de tierra cruda y requisitos del proyecto estructural, [Standard NCh-3332 Structures, Intervention of heritage earthen constructions and requirements of the structural project]."
dc.relationCongreso de Colombia. (1959). Ley 163/1959: Por la cual se dictan medidas sobre defensa y conservación del patrimonio histórico, artístico y monumentos públicos de la Nación, 1959; Congreso de Colombia, Ley 1185/2008: Por la cual se modifica y adiciona la Ley 397 de 1997 "Ley General de Cultura", 2008. [Law 163/1959: By which measures are dictated on defense and conservation of the historical, artistic heritage and public monuments of the Nation, 1959; Law 1185/2008: By which Law 397 of 1997 - General Law of Culture - 2008 is modified and added]
dc.relationAngulo-Ibáñez Q., Wooden Reinforcement for Earth Constructions in Albacete, Spain, Journal of Architectural Conservation 21, no. 2 (2015): 98-112.
dc.relationCorradine, A. (1989). Historia de la arquitectura colombiana. Colonia 1538-1850, Bogotá, Biblioteca Cundinamarca, Primera Edición.
dc.relationD'Ayala D., Benzoni G. (2010). Historic and Traditional Structures during the 2010 Chile Earthquake: Observations, Codes, and Conservation strategies. Earthq. Spectra. 28, 425-451, https://doi.org/10.1193/1.4000030
dc.relationD'Ayala D., Speranza E. (2003). Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings, Earthq. Spectra. https://doi.org/10.1193/1.1599896
dc.relationDay, R. W. (1993). Performance of Historic Adobe Structure. Journal of Performance of Constructed Facilities, 7(3), 164-169. https://doi.org/10.1061/(ASCE)0887-3828(1993)7:3(164)
dc.relationDulal-Tripura D., Gupta S., Debbarma B., Satya-Sai-Deep R. (2020). Flexural strength and failure trend of bamboo and coir reinforced cement stabilized rammed-earth wallettes. Construction and Building Materials 242 (2020) 117986. https://doi.org/10.1016/j.conbuildmat.2019.117986
dc.relationD. C. (2008). Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al DM 14 Gennaio.
dc.relationFEMA. (2007). Council. AT, Center. M-AE, (U.S.) MC for EER, Center. PEER, (U.S.) NEHRP. FEMA 461. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components 2007.
dc.relationFigueiredo A., Varum H., Costa A., Silveira D., Oliveira C. (2013). Seismic retrofitting solution of an adobe masonry wall. Materials and Structures (2013) 46:203-219. DOI 10.1617/s11527-012-9895-1. https://link.springer.com/article/10.1617/s11527-012-9895-1
dc.relationFOREC (2004). Informe Final: estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada (2004). Preparado por la Asociación Colombiana de Ingeniería Sísmica para el FOREC.
dc.relationGandreau D. and L. Delboy. (2012). UNESCO- CRAterre-ENSAG. World Heritage. Inventory of earthen architecture. https://whc.unesco.org/document/116577
dc.relationGazzola P., Lemaire R., Bassegoda-Nonell J., Benavente L., Boskovic D., Daifuku H., Vrieze P., Langberg H., Matteucci M., Merlet J., Flores C., Pane R., Pavel S.C.J., Philippot P, Pimentel V., Plenderleith H., Redig de Campos D., Sonnier J., Sorlin F., Stikas E., Tripp G., Zachwatovicz J., Zbiss M.. (1964). The Venice Charter for the Conservation and Restoration of Monuments and Sites. Second International Congress of Architects and Specialists of Historic Buildings (1964).
dc.relationGirhammar U.A, Pan D.H. (2007). Exact static analysis of partially composite beams and beam-columns. International Journal of Mechanical Sciences. Volume 49, Issue 2, Pages 239-255. https://doi.org/10.1016/j.ijmecsci.2006.07.005
dc.relationGirhammar UA, Pajari M. (2008). Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping. Construction and Building Materials Volume 22, Issue 8, Pages 1708-172. https://doi.org/10.1016/j.conbuildmat.2007.05.013
dc.relationGirhammar UA. (2008). Composite beam-columns with interlayer slip-Approximate analysis. International Journal of Mechanical Sciences, Volume 50, Issue 12, Pages 1636-1649. https://doi.org/10.1016/j.ijmecsci.2008.09.003
dc.relationGirhammar UA. (2009). A simplified analysis method for composite beams with interlayer slip. International Journal of Mechanical Sciences, Volume 51, Issue 7, Pages 515-530. https://doi.org/10.1016/j.ijmecsci.2009.05.003
dc.relationGómez, V., López, C., Ruiz, D. (2016). Seismic rehabilitation of rammed-earth heritage buildings: study case of doctrinal church. Informes de La Construcción, Vol. 68, 5. https://doi.org/10.3989/ic.15.017
dc.relationHall M., R. Lindsay, M. Krayenhoff. (2012). Modern Earth Buildings: Materials, Engineering, Constructions and Applications. Wood head Publishing Series in Energy. Chapter 4: H. Schroeder. Modern earth building codes, standards, and normative development. In Modern Earth Buildings. Wood head Publishing; https://www.sciencedirect.com/book/9780857090263/modern-earth-buildings
dc.relationHamilton H.R., McBride J., Grill J. (2006). Cyclic testing of rammed-earth walls containing post-tensioned reinforcement, Earthq. Spectra. 22, 937-959, https://doi.org/10.1193/1.2358382
dc.relationHarris H, Sabnis G. (1999). Structural modeling and experimental techniques, 1st edn. CRC Press, Boca Raton
dc.relationHracov S., Pospisil S., Garofano A., Urushadze S. (2016). In-plane cyclic behaviour of unfired clay and earth brick walls in both unstrengthened and strengthened conditions. Materials and Structures (2016) 49:3293-3308. DOI 10.1617/s11527-015-0720-5. https://link.springer.com/article/10.1617/s11527-015-0720-5
dc.relationIllampas R., Charmpis D., Ioannou I. (2014). Laboratory testing and finite element simulation of the structural response of an adobe masonry building under horizontal loading. Engineering Structures, 80, 362-376. https://doi.org/10.1016/j.engstruct.2014.09.008
dc.relationJun-Feng Zhang, Shi-Yun Pang, Jin-Wen Gao, En-Feng Deng, Huan Wang, Jun-Jie Zhao. (2020). Experimental study on seismic behaviour of adobe wall reinforced with cold formed thin walled steel. Thin-Walled Structures, 147. https://doi.org/10.1016/j.tws.2019.106493
dc.relationKeefe L. (2005). Earth Building Methods and Materials, Repair and Conservation, London, Taylor and Francis, 2005.
dc.relationLiu K., Wanga M., Wang Y. (2015). Seismic retrofitting of rural rammed-earth buildings using externally bonded fibers. Construction and Building Materials 100 (2015) 91-101. http://dx.doi.org/10.1016/j.conbuildmat.2015.09.048
dc.relationLhem D. (2013). Lehmbau Regeln: Begriffe Baustoffe Bauteile.
dc.relationLópez C. and Sierra D., Condicionantes bioclimáticos en la arquitectura colonial de Colombia: la casa-patio en Cartagena de Indias y Bogotá [Bioclimatic determinants in the colonial architecture of Colombia: the courtyard house in Cartagena de Indias and Bogotá], Estoa7, no. 12 (2018): 7-18.
dc.relationLubliner J, Oliver J, Oller S, Oñate E. (1989). A plastic-damage model for concrete. Int J Solids Struct. https://doi.org/10.1016/0020-7683(89)90050-4
dc.relationLangenbach R. (2003). Performance of the Earthen Arg-e-Bam (Bam Citadel) during the 2003 Bam, Iran, Earthquake. Earthquake Spectra, Volume 21, No. S1, pages S345-S374. https://doi.org/10.1193/1.2113167
dc.relationLetiec J.M. (2005). G. Paccoud. PISÉ H2O. CRATerre Edition 2005.
dc.relationLiu K., Wang M., Wang Y. (2015). Seismic retrofitting of rural rammed-earth buildings using externally bonded fibers, Constr. Build. Mater. 100, 91-101, https://doi.org/10.1016/j.conbuildmat.2015.09.048
dc.relationLópez, C., Ruiz, D., Muñoz, E., Uribe, J., Maldonado, P., Jerez, S. (2005). Rehabilitación de arquitectura en tierra en el área andina. En Sismo Adobe 2005. Lima. Pontificia Universidad Católica del Perú.
dc.relationLópez C., Ruiz D., Jerez S., Quiroga P., Uribe J. and Muñoz E. (2007). Rehabilitación sísmica de muros de adobe de edificaciones monumentales mediante tensores de acero [Seismic rehabilitation of adobe brick walls in heritage buildings using steel tensors]. Apuntes: Revista de Estudios Sobre Patrimonio Cultural - Journal of Cultural Heritage Studies, 20(2): 304-317. https://repository.javeriana.edu.co/handle/10554/22922
dc.relationLópez, C., Ruiz, D., Jerez, S., Aguilar, S., Torres, J., and Alvarado, Y. (2020). Seismic behaviour of rammed-earth buildings reinforced with wood elements and an upper concrete beam. Informes de la Construcción, Vol. 72, 559, e347. july-september 2020. https://doi.org/10.3989/ic.70914
dc.relationMeek A., Beckett C., Carsana M., Ciancio D. (2018). Corrosion protection of steel embedded in cement-stabilised rammed earth. Construction and Building Materials. 187, 942-953. https:// doi.org/10.1016/j.conbuildmat.2018.07.210
dc.relationMeybodian H., Eslami A., Morshed R. (2020). Sustainable lateral strengthening of traditional adobe walls using natural reinforcements. Construction and Building Materials Volume 260, 10 November 2020, 119892. https://doi.org/10.1016/j.conbuildmat.2020.119892
dc.relationMiccoli L., Müller U., Pospí il S. (2017). Rammed-earth walls strengthened with polyester fabric strips: experimental analysis under in-plane cyclic loading, Constr. Build. Mater. 149, 29-36, https://doi.org/10.1016/j.conbuildmat.2017.05.115
dc.relationMiccoli L., U. Müller, P. Fontana. (2014). Mechanical behavior of earthen materials: a comparison between earth block masonry, RE and cob. Construction and building materials. 61, 327-339, https://doi.org/10.1016/j.conbuildmat.2014.03.009
dc.relationMinisterio de Cultura. (2021). Resolución 008/2021: Por la cual se aprueba el Plan Especial de Manejo y Protección PEMP del Centro Histórico de Bogotá.
dc.relationNew Mexico Administrative Code-NMAC. (2015). Title 14 - housing and construction, chapter 7 - building codes general, part 4 - New Mexico earthen building materials code.
dc.relationNew Zealand Standard. NZS 4297. (1998). Engineering Design of Earth Buildings. Wellington, New Zealand.
dc.relationOjeda M., Muñoz E. (2002). Análisis estructural de inmuebles en tierra y/o arcilla y su comportamiento sismorresistente en nuestro medio. Trabajo de Investigación para acceder al título otorgado por la Maestría en Restauración de Monumentos Arquitectónicos de la Pontificia Universidad Javeriana.
dc.relationPapanikolau, A. and Taucer, F. (2004). Review of Non-Engineered Houses in Latin America with Reference to Building Practices and Self-Construction Projects. Joint Research Center. EUR 21190EN.
dc.relationReyes J.C., Yamín L.E., Hassan W.M., Sandoval J.D., Gonzalez C.D., Galvis F.A. (2018). Shear behavior of adobe and rammed-earth walls of heritage structures, Eng. Struct. https://doi.org/10.1016/j.engstruct.2018.07.061
dc.relationReyes, J. C., Smith-Pardo, J. P., Yamín, L. E., Galvis, F. A., Sandoval, J. D., Gonzalez, C. D., and Correal, J. F. (2019). In-plane seismic behavior of full-scale earthen walls with openings retrofitted with timber elements and vertical tensors. Bulletin of Earthquake Engineering, 17(7), 4193-4215. https://doi.org/10.1007/s10518-019-00601-8
dc.relationReyes, J. C., Smith, J. P., Yamín, L. E., heritage structures, F. A., Angel, C. C., Sandoval, J. D., and Gonzalez, C. D. (2019a). Seismic experimental assessment of steel and synthetic meshes for retrofitting heritage earthen structures. Engineering Structures, 198, 109477. https://doi.org/10.1016/j.engstruct.2019.109477
dc.relationReyes, J. C., Galvis F., Yamín L., Gonzalez C., Sandoval J.D., Heresi P. (2019b). Out of "plane shaking table tests of full" scale historic adobe corner walls retrofitted with timber elements. Earthquake Engineering and Structural Dynamics. 48:888-909. https://doi.org/10.1002/eqe.3168
dc.relationReyes, J. C., Rincon, R., Yamín, L. E., Correal, J. F., Martinez, J. G., Sandoval, J. D., Gonzalez, C. D., and Angel, C. (2020). Seismic retrofitting of existing earthen structures using steel plates. Construction and Building Materials, 230, 117039. https://doi.org/10.1016/j.conbuildmat.2019.117039
dc.relationRincon R, Reyes JC, Carrillo J, Clavijo-Tocasuchyl A. (2022). Empirical fragility assessment of adobe and rammed-earth walls subjected to seismic actions. Earthquake Engng Struct Dyn. 2022;1-25. https://doi.org/10.1002/eqe.3608
dc.relationRío G.B., Barrios PB. (1992). Bases para el diseño y construcción con tapial. Madrid, Spain.
dc.relationRuiz D., López C., and Rivera, J. C. (2012). Propuesta de normativa para la rehabilitación símica de edificaciones patrimoniales [Proposed regulations for seismic rehabilitation of earthen heritage buildings]. Apuntes: Revista de Estudios Sobre Patrimonio Cultural - Journal of Cultural Heritage Studies, 25(2 SE-). https://repository.javeriana.edu.co/handle/10554/23115
dc.relationRuiz D., López C., Unigarro S., and Domínguez M. (2014). Seismic Rehabilitation of Sixteenth- and Seventeenth-Century Rammed-earth Built Churches in the Andean Highlands: Field and Laboratory Study. Journal of Performance of Constructed Facilities, 29(6): 04014144-1 - 04014144-17. http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000605
dc.relationRuiz, D., Silva, M., Cerón, L. and López, C. (2017). Seismic performance of rammed-earth town halls reinforced with confinement wooden elements. Revista Ingeniería de Construcción, 32(2): 25-44. https://doi.org/10.4067/S0718-50732017000200003
dc.relationRuiz D.M., Reyes J.C., Bran C., Restrepo M., Alvarado Y.A., Barrera N., Suesca D. (2022). Flexural behavior of rammed-earth components reinforced with steel plates based on experimental, numerical, and analytical modeling. Construction and Building Materials. 320, 126231. https://doi.org/10.1016/j.conbuildmat.2021.126231
dc.relationRuiz D., Galindo P., Hernández A., Reyes J. C., Restrepo M., Barrera N., Martinez J., López C. (2023). Structural reinforcement of 1 and 2 story heritage earthen buildings: application of the AIS-610-EP-2017 regulation. Informes de la Construcción, 75(269), e488. https://doi.org/10.3989/ic.90103
dc.relationRuiz D. M., Barrera N., Reyes J.C., Alvarado Y.A., Villalba J., Gómez I.D., Vacca H., Carrasco D. (2023a). Bi-axial shaking table tests to evaluate the seismic performance of two-story rammed earth walls retrofitted with steel plates. Bulletin of Earthquake Engineering (submitted).
dc.relationRuiz D. M., Barrera N., Reyes J.C., Restrepo M., Alvarado Y.A., Lozada M., Vacca H. (2023b). "Strengthening of historical earthen constructions with steel plates: Full-scale test of a two-story wall subjected to in-plane lateral load". Construction and Building Materials, Volume 363, 11 January 2023, 129877. https://doi.org/10.1016/j.conbuildmat.2022.129877
dc.relationSaldarriaga A. (2012). La restauración del patrimonio construido en Colombia. Experiencias y Métodos de Restauración En Colombia, vol. 2 (Roma: Aracne), 29-35.7
dc.relationSánchez-Gama, C. E. (2007). La arquitectura de tierra en Colombia, procesos y culturas constructivas. Revista Apuntes: Revista de Estudios Sobre Patrimonio Cultural, 20(2), 242-255. https://repository.javeriana.edu.co/handle/10554/23047
dc.relationSENCICO. (2020). NTE-E-0.80. Diseño y construcción con tierra reforzada. Reglamento Nacional de Edificaciones. Lima, Perú.
dc.relationShrestha, K. C., Aoki, T., Konishi, T., Miyamoto, M., Zhang, J., Takahashi, N., Wangmo, P., Aramaki, T., and Yuasa, N. (2019). Full Scale Pull Down Tests on a Two Storied Rammed-earth Building with Possible Strengthening Interventions. Structural Analysis of Historical Constructions. Vol. 18. Springer, Cham. (pp. 1557-1565). https://doi.org/10.1007/978-3-319-99441-3_167
dc.relationShrestha, K. C., Aoki, T., Miyamoto, M., Wangmo, P., Pema, Zhang, J., and Takahashi, N. (2020). Strengthening of rammed-earth structures with simple interventions. Journal of Building Engineering, 29, 101179. https://doi.org/10.1016/j.jobe.2020.101179
dc.relationStandards Australia. (2002). The Australian Earth Building Handbook. Sydney, AU.
dc.relationTarque N., Crowley H., Pinho R., Varum H. (2012). Displacement-based fragility curves for seismic assessment of adobe buildings in Cusco, Peru. Earthquake Spectra. 2012;28(2):759-794. https://doi.org/10.1193/1.4000001
dc.relationTarque N., Blondet M., Vargas Neumann J., Yallico Luque, R. (2022). Rope mesh as a seismic reinforcement for two story adobe buildings. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-022-01346-7
dc.relationTavares, A., Costa, A., and Varum, H. (2012). Common pathologies in composite adobe and reinforced concrete constructions. J. Perform. Constr. Facil. Volume 26, Issue 4, 389-401. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000200
dc.relationTiegang Zhou, Bo Liu, Xiang Zhao, Jun Mu. (2018). Experimental testing of the in-plane behavior of bearing modern rammed-earth walls. Advances in Structural Engineering 2018, Vol. 21(13) 2045-2055. https://doi.org/10.1177/1369433218764978
dc.relationTiegang Zhou, Zaiyu Zhang, Zhifan Su and Peng Tian. (2021). Seismic performance test of rammed-earth wall with different structural columns. Advances in Structural Engineering 2021, Vol. 24(1) 107-118. https://doi.org/10.1177/1369433220944506
dc.relationTolles, L. and Krawinkler, H. (1990). Seismic Studies on Small-Scale Models on Adobe Houses. John A. Blume Earthquake Engineering Center Technical Report Series Nº 91. Stanford University. https://stacks.stanford.edu/file/druid:ct954yd6550/TR91_Tolles.pdf
dc.relationTorres S.J. (2019). The anti-seismic capacity and enhancement of earthen structures. Earthen architecture for the urban context of Bogotá, (master's thesis, Politecnico di Torino).
dc.relationUrbina A. (2012). El Centro Histórico de Bogotá de puertas para adentro [Inside the Historic Center of Bogotá]. Cuadernos de vivienda y urbanismo 5, no. 9: 46-69.
dc.relationUribe, C., López C., and Ruiz D. (2014). Casas consistoriales en Cundinamarca. Estudio de caso de la casa del municipio de Cogua. Apuntes: Revista de Estudios Sobre Patrimonio Cultural. https://repository.javeriana.edu.co/handle/10554/23227
dc.relationVarum, H., Figueiredo, A., Silveira, D., Martins, T., Costa, A. (2011). Investigaciones realizadas en la Universidad de Aveiro sobre caracterización mecánica de las construcciones existentes en adobe en Portugal y propuestas de rehabilitación y refuerzo. Informes de la Construcción, 63(523): 127-142. https://doi.org/10.3989/ic.10.016
dc.relationVarum H., D. Silviera, C. Figeiredo, A. Costa. (2014). Structural Behaviour and Retrofitting of Adobe Masonry Buildings, Structural Rehabilitation of Old Buildings. Building Pathology and Rehabilitation. 2, 37-75. https://doi.org/10.1007/978-3-642-39686-1_2
dc.relationVarum h., Parisi F., Tarque N., Silveira D. (2021). Structural Characterization and Seismic Retrofitting of Adobe Constructions. Building Pathology and Rehabilitation. Volume 20. https://doi.org/10.1007/978-3-030-74737-4
dc.relationVyncke J., L. Kupers, N. Denies. (2018). Earth as Building Material an overview of RILEM activities and recent Innovations in Geotechnics. In MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201814902001
dc.relationYamín L. E., Phillips C., Reyes J. C., and Ruiz D. (2007). Estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada. Apuntes: Revista de Estudios Sobre Patrimonio Cultural, 20(2), 286-303. https://repository.javeriana.edu.co/handle/10554/23002
dc.relationYamín, L. E., Rodríguez, A. E., Fonseca, L. R., Reyes, J. C., and Phillips, C. A. (2003). Comportamiento sísmico y alternativas de rehabilitación de edificaciones en adobe y tapia pisada con base en modelos a escala reducida ensayados en mesa vibratoria. Revista Facultad de Ingeniería, Universidad de los Andes. https://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/492
dc.relationYamín L., Phillips C., Reyes J. C., Ruiz D. (2004). Seismic Behavior and Rehabilitation Alternatives for Adobe and Rammed-earth Buildings. 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6.
dc.relationZavala C., Igarashi L. (2005). Propuesta de reforzamiento para muros de adobe. SismoAdobe2005: Arquitectura, Construcción y Conservación de Edificaciones de Tierra en Áreas Sísmicas. 2005.
dc.relationZegarra L., San-Bartolome A., Quiun D. y Giesecke, A. (1997). Manual Técnico para el reforzamiento de las viviendas de adobe existentes en la costa y la sierra, Lima-Perú. https://www.preventionweb.net/files/7630_manualtecnico.pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.titleSeismic retrofit of two-story earthen historic buildings using steel plates
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución