dc.contributorOsma Cruz, Johann Faccelo
dc.contributorSegura Gómez, Crhistian Camilo
dc.contributorSotelo Briceño, Diana Camila
dc.contributorCruz Jiménez, Juan Carlos
dc.contributorBiomicrosystems
dc.creatorCabrera Penna, Maidy Lucila
dc.date.accessioned2023-06-29T20:47:14Z
dc.date.accessioned2023-09-06T23:02:07Z
dc.date.available2023-06-29T20:47:14Z
dc.date.available2023-09-06T23:02:07Z
dc.date.created2023-06-29T20:47:14Z
dc.date.issued2023-06-01
dc.identifierhttp://hdl.handle.net/1992/68015
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726131
dc.description.abstractIn this work, a remote control system for real-time monitoring of a potentiostat was designed and implemented by combining an embedded system and a web service, called PAWL. This allows the management and manipulation of potentiostat data from any location with Internet access, and offers bidirectional communication with the device. The results obtained indicate that PAWL allows connecting and measuring two or more devices simultaneously, and it is also able to guarantee the efficient sending and receiving of data between the potentiostat and the web service, without the installation of specialized applications or software. All this provides a new form of remote control of potentiostats in a laboratory and offers an alternative for monitoring and control of equipment and devices used in a laboratory.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Electrónica y de Computadores
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.relationJiménez Fernández, A. I., & Pérez Sanagustín, M. (2018). The evolution of remote laborato-ries: from university classrooms to open and mass education. Education XX1, 21(2), 13-34.
dc.relationJardón, A., Maza, I., García-Zubia, J., & Orduna, P. (2014). Evolution of remote laboratories: A historical review. IEEE Transactions on Industrial Electronics, 61(8), 4465-4475.
dc.relationCao, J., Li, X., Li, J., & Lu, H. (2019). A review of remote laboratory technology: Potentials and challenges. IEEE Transactions on Learning Technologies, 12(1), 4-19.
dc.relationDimitriadis, Y., & Tzanavari, A. (2020). Online remote labs for STEM education: A review of literature. International Journal of Online Engineering, 16(2), 14-30.
dc.relationDe Arco, J. A., & Villar, J. R. (2017). Integration of Web Services in Remote Laboratories for Engineering Education. IEEE Journal of Iberoamerican Journal of Learning Technologies, 12(1), 36-43.
dc.relationLópez de Ipiña, D., Vergara, A., & Aguirre, I. (2016). Industry 4.0 and the internet of things: A review of the current state of the art and future perspectives. Computers in Industry, 81, 1-12.
dc.relationRodríguez, F. J., & Marín, R. (2021). Industry 4.0 and remote laboratories: A review of cur-rent trends and future challenges. Education Sciences, 11(9), 440.
dc.relationGonzález, I., Calderón, A.J., Mejías, A., & Andújar, J.M. 2016. New networked remote labor-atory architecture for open connectivity based on PLC-OPC-labview-EJS integration. Appli-cation in fuzzy remote control and sensores data acquisition. Sensors 16, Vol 11, 1822.
dc.relationThakur, A., Kumar, V., & Bhatia, M. P. S. (2019). Internet of things (IOT) and its role in in-dustry 4.0: A comprehensive review. Journal of Engineering Research and Applications, 9(1), 1-8.
dc.relationBarrero, F., Toral, S. & Gallardo, S. (2008). EDSPLAB: remote laboratory for experiments on DSP applications. Internet Research, Vol. 18, 79-92.
dc.relationCrespo, M. L, Foulon, F., Cicuttin, A., Bogovac, M., Onime, C., Melo, R., Florian Samayoa, W., García Ordoñez, L.G., Molina, R., & Valinoti, B. (2021). Laboratorio Remoto para E-Learning de Sistemas en Chip y sus Aplicaciones a la Instrumentación Científica y Nuclear. Electronics 10, Vol. 18, 2191.
dc.relationBarba-Jiménez, C., & Ponce, A. (2020). Design and Implementation of a Remote Laboratory of Embedded Systems. IEEE Latin American Transactions, 18(8), 1429-1437.
dc.relationLee, S., Lee, J., & Kang, H. (2019). Internet of Things (iot)-based Smart Remote Laboratory System for Embedded System Education. IEEE Access, 7, 84387-84397.
dc.relationMartínez Suárez, R. A., Hernández Jiménez, H., Aguilar González, M. Á., Romero-Troncoso, R. J., & Osornio ríos, R. A. (2020). Development of a Bidirectional Communication System for Remote Laboratories Using LabVIEW. IEEE Access, 8, 109775-109786.
dc.relationZhang, Y., Liu, Y., Wang, X., & Yu, Y. (2021). Design of a Bidirectional Remote Laboratory Based on the Industrial Internet of Things. IEEE Access, 9, 96211-96220.
dc.relationGómez, A., Aldea, C., & Botella, G. (2017). Integration of a remote embedded systems la-boratory with a virtual learning environment. IEEE Global Engineering Education Conference (EDUCON), 1-6.
dc.relationHameed, S., Shahzad, M., Hameed, M., Raza, S. & Bilal, M. (2019). An Efficient Architecture for Web-Based Remote Laboratories. IEEE Access, Vol. 7, 127 782-127 792.
dc.relationMuñoz Merino, P., De Silva, I. M. J., C. Alario-Hoyos, Borrás-Gené, D. & Delgado Kloo, C. (2016). Advances and current trends in the interoperability of web-based educational sys-tems. Advances in Web-Based Learning - ICWL 2016, 3-14.
dc.relationBard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applica-tions (2ª ed.). Wiley.
dc.relationBasha, S. M., & Ali, S. A. (2020). Remote Potentiostat for Detection of Heavy Metals in Wa-ter. Journal of The Electrochemical Society, 167(10), 106513.
dc.relationMasek, A., Rivas López, M., & Rodríguez Donate, C. (2011). Remote laboratory experimen-tation in education: A review. Computers and Education, 57(3), 1927-1936.
dc.relationSegura Gómez, C. (2022). A low-cost multi-technique portable electrochemical device for remote Biosensors. Universidad de of Andes.
dc.relationEspressif Systems. (2019). ESP32-devkitc V1 getting started guide. Retrieved from https://www.espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf
dc.relationBiomicrosystems team (2023). Biomicrosystems team website. Retrieved from https://cmua.uniandes.edu.co/index.php/es/projects/prueba/34-researchlines/biomicrosistemas/332-join.
dc.relationChia-Hung Lee, S. & Burke, P. J. (2022). Nanostat: An open source, fully wire-less potenti-ostat. Electrochimica Acta, Vol. 422, 140481.
dc.relationBianchi, V., Boni, A., Bassoli, M., Fortunati, S., Giannetto, M. & Ilaria De Munari. (2021). Iot And Biosensors: A Smart Portable Potentiostat with Advanced Cloud-Enabled Features. Vol. 9, 141552.
dc.relationBittar Vidotto, L.H., Dagwin Wachholz, J., Tatsuo Kubota, L. (2023). A simple and low-cost portable potentiostat with real-time data sharing for wireless electrochemical analyses. Jour-nal of Electroanalytical Chemistry, Vol. 937, 117414.
dc.rightsAtribución 4.0 Internacional
dc.rightsAtribución 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleRemote laboratory control system for portable biosensors
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución