dc.contributorGómez Salgado, Adán Alberto
dc.creatorJerónimo Montiel, Alba Judith
dc.date2020-06-11T21:05:59Z
dc.date2020-06-11T21:05:59Z
dc.date2020
dc.date.accessioned2023-09-06T21:58:54Z
dc.date.available2023-09-06T21:58:54Z
dc.identifierhttps://repositorio.unicordoba.edu.co/handle/ucordoba/2888
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8711468
dc.descriptionCognitive modeling is a methodology of cognitive sciences that allows the simulation of human cognitive processes in a variety forms, commonly in a computational and mathematical way. The cognitive modeling aims at understanding cognition basis by designing cognitive models based on mathematical or computational processes, mechanisms and representations. A cognitive model is a verbal-conceptual computational and mathematical description of some mental processes, whose main purpose is to understand and/or predict human or animal behavior. Cognitive models developed for a cognitive architecture are characterized by being executables and producing a set of specific behaviors. CARINA is a metacognitive architecture to create artificial intelligent agents derived from Metacognitive Metamodel MISM. CARINA is a metacognitive architecture structured by two cognitive levels called object-level and meta-level. The object-level has the model of the world to solve problems. The meta-level represents the reasoning of an artificial intelligent agent. Furthermore, the meta-level has the components, the knowledge and the mechanisms for an intelligent system to monitor and control its own learning and reasoning processes. The main objective of this research project is to develop cognitive models as knowledge acquisition mechanisms for the metacognitive architecture CARINA, through the following specific objectives: i) to represent formal, semantic and computationally cognitive models for the CARINA metacognitive architecture, ii) to build a functional prototype of a framework for the creation of cognitive models in the metacognitive architecture CARINA and iii) to create cognitive models in several knowledge domains using CARINA based intelligent systems. The methodology used for this research project was part of the research methods (R+D) used in computer science, called modeling, structured by five steps: i) Formal representation, ii) Semantic representation, iii) Computational representation of a cognitive model, iv) Creation of a functional prototype for build cognitive models and v) Prototype testing and maintenance. The developed research project allows simplifying the developing intelligent agents process and the easiness to enable any programmer to uses CARINA to solve cognitive tasks, focusing only on descriptions of cognition and relationships with algorithms and programs based on computer science and technology, using a functional prototype (MetaThink version 2.0). As a result, an open standard file format, simplifying the complexities of detailed descriptions of cognitive mechanisms of brain functioning was created.
dc.description1. Chapter I Introduction 16
dc.description1.1. Motivation 19
dc.description1.2. Thesis Project 20
dc.description1.2.1. Research Project 20
dc.description1.2.2. Research Problem 20
dc.description1.3. Research Question 22
dc.description1.4. Objectives 23
dc.description1.4.1. General Objective 23
dc.description1.4.2. Specific Objectives 23
dc.description1.5. Methodology 23
dc.description1.6. Document Organization 25
dc.description2. Chapter II Theoretical Background 27
dc.description3. Chapter III Theoretical Framework 51
dc.description3.1. Cognitive Modeling 51
dc.description3.2. Cognitive Models 53
dc.description3.3. Cognitive Architectures 56
dc.description3.4. Metacognitive Architectures 57
dc.description3.5. Knowledge Representation 59
dc.description3.6. Denotational Mathematics 60
dc.description4. Chapter IV The Metacognitive Architecture CARINA 61
dc.description5. Chapter V Cognitive Models for the Metacognitive Architecture CARINA 66
dc.description5.1. Formal Representation of Cognitive Models in CARINA 66
dc.description5.1.1. Comparison with other Cognitive Architectures 73
dc.description5.1.2. Similarities 74
dc.description5.1.3. Differences 74
dc.description5.2. Semantic Representation of Cognitive Models in CARINA 75
dc.description5.2.1. Semantic Knowledge Representation of a Cognitive Model in CARINA 76
dc.description5.2.2. Formal Specification of Semantic Memory Units (SMU) in CARINA 78
dc.description5.3. Computational Representation of Cognitive Models for the CARINA Metacognitive Architecture. 80
dc.description5.4. MetaThink Version 2.0 83
dc.description5.4.1. MetaThink Version 2.0 Validation 88
dc.description5.5. Illustrative Examples of Cognitive Models in CARINA 93
dc.description6. Chapter VI Conclusions 105
dc.description6.1. Recommendations 106
dc.description7. Chapter VII References 108
dc.descriptionPregrado
dc.descriptionLicenciado(a) en Informática
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherFacultad de Educación y Ciencias Humanas
dc.publisherLicenciatura en Informática
dc.relationAamodt, A. (1995). Knowledge acquisition and learning by experience--the role of case-specific knowledge. Machine Learning and Knowledge Acquisition, 197–245.
dc.relationAnderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.
dc.relationApt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). Elsevier.
dc.relationArevalillo-Herráez, M., Arnau, D., & Marco-Giménez, L. (2013). Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowledge-Based Systems, 49, 97–105.
dc.relationAtkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.
dc.relationAvery, E., Kelley, T. D., & Davani, D. (2006). Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. 15th Annual Conference on Behavioral Representation in Modeling and Simulation (BRIMS).
dc.relationBarchini, G. E., Sosa, M., & Herrera, S. (2004). La informática como disciplina científica. Ensayo de mapeo disciplinar. Revista de Informática Educativa y Medios Audiovisuales, 1(2), 1-11.
dc.relationBechtel, W. (2012). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psychology Press.
dc.relationBoley, H., Paschke, A., & Shafiq, O. (2010). RuleML 1.0: the overarching specification of web rules. International Workshop on Rules and Rule Markup Languages for the Semantic Web, 162–178.
dc.relationBorst, J. P., & Anderson, J. R. (2015). Using the ACT-R Cognitive Architecture in combination with fMRI data. In An introduction to model-based cognitive neuroscience (pp. 339–352). Springer.
dc.relationCaro, Manuel F., Josvula, D. P., Gomez, A. A., & Kennedy, C. M. (2018). Introduction to the CARINA Metacognitive Architecture. Proceedings of 2018 IEEE 17th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2018, 530–540. https://doi.org/10.1109/ICCI-CC.2018.8482051
dc.relationCaro, Manuel F, & Jiménez, J. A. (2014). MOF-based metamodel for pedagogical strategy modeling in Intelligent Tutoring Systems. 2014 9th Computing Colombian Conference (9CCC), 1–6.
dc.relationCaro, Manuel F, Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82–104.
dc.relationCaro, Manuel F, Josyula, D. P., Jiménez, J. A., Kennedy, C. M., & Cox, M. T. (2015). A domain-specific visual language for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architectures, 13, 75–90.
dc.relationCaro, Manuel Fernando, Josyula, D. P., Madera, D. P., Kennedy, C. M., & Gómez, A. A. (2019). The CARINA Metacognitive Architecture. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 13(4), 71–90.
dc.relationCox, M. T. (2005). Field review: Metacognition in computation: A selected research review. Artificial Intelligence, 169(2), 104–141.
dc.relationCox, M. T., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Architecture. AAAI Fall Symposium: Advances in Cognitive Systems.
dc.relationFlórez, Y. P., Jerónimo, A. J., Castillo, M. E., & Gómez, A. A. (2019). User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA. The International Conference on Advances in Emerging Trends and Technologies, 473–484.
dc.relationFord, K. M., & Bradshaw, J. M. (1993). Introduction: Knowledge acquisition as modeling. International Journal of Intelligent Systems, 8(1), 1–7.
dc.relationGeorgeff, M. (1988). A theory of action for multiagent planning. In Readings in Distributed Artificial Intelligence (pp. 205–209). Elsevier.
dc.relationGerasimou, S., Vogel, T., & Diaconescu, A. (2019). Software Engineering for Intelligent and Autonomous Systems: Report from the GI Dagstuhl Seminar 18343. ArXiv Preprint ArXiv:1904.01518.
dc.relationGhasemzadeh, M. (2010). Constructing Semantic Knowledge Model based on Children Dictionary.
dc.relationGlass, J. M. (2008). Fibromyalgia and cognition. The Journal of Clinical Psychiatry, 69, 20–24.
dc.relationGobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236–243.
dc.relationGoela, V., Pullara, D., & Grafman, J. (2001). A computational model of frontal lobe dysfunction: Working memory and the Tower of Hanoi task. Cognitive Science, 25(2), 287–313.
dc.relationGonzalez, C., & Gonzalez, C. (2002). The Role of Cognitive Modeling in Enhancing Dynamic Decisions. Retrieved April 2, 2018, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.5953
dc.relationHatzilygeroudis, I., & Prentzas, J. (2006). Knowledge representation in intelligent educational systems. In Web-based intelligent e-learning systems: Technologies and applications (pp. 175–192). IGI Global.
dc.relationHatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements for intelligent tutoring systems. International Conference on Intelligent Tutoring Systems, 87–97.
dc.relationIsern, D., Gómez-Alonso, C., & Moreno, A. (2008). Methodological development of a multi-agent system in the healthcare domain. Communications of SIWN, 3, 65–68.
dc.relationJensen, R., de Moraes Lopes, M. H. B., Silveira, P. S. P., Ortega, N. R. S., & others. (2012). The development and evaluation of software to verify diagnostic accuracy. Revista Da Escola de Enfermagem Da USP.
dc.relationJerónimo, A. J., Acosta, K., Caro, M. F., & Rodríguez, R. (2017). Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática.
dc.relationJerónimo, A. J., Caro, M. F., & Gómez, A. A. (2018). Formal Specification of cognitive models in CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 614–619.
dc.relationJohn, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction (TOCHI), 3(4), 320–351.
dc.relationJohns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M., Kareken, D. A., Unverzagt, F. W., & Jones, M. N. (2018). Cognitive modeling as an interface between brain and behavior: Measuring the semantic decline in mild cognitive impairment. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 72(2), 117.
dc.relationKieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and GLEAN3. University of Michigan, 313.
dc.relationKopp, S., & Bergmann, K. (2017). Using cognitive models to understand multimodal processes: The case for speech and gesture production. The Handbook of Multimodal-Multisensor Interfaces, 239–276.
dc.relationKotseruba, I., Gonzalez, O. J. A., & Tsotsos, J. K. (2016). A review of 40 years of cognitive architecture research: focus on perception, attention, learning and applications. CoRR Abs/1610.08602.
dc.relationKronenfeld, D. B. (1978). Scripts, plans, goals, and understanding: an inquiry into human knowledge structures By Roger C. Schank and Robert P. Abelson. Language, 54(3), 779.
dc.relationKwasnik, B. H. (1999). The role of classification in knowledge representation and discovery.
dc.relationLebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic. Kognitionswissenschaft, 8(1), 5–19.
dc.relationLevesque, H. J. (1986). Knowledge Representation and Reasoning. Annual Review of Computer Science, 1(1), 255–287. https://doi.org/10.1146/annurev.cs.01.060186.001351
dc.relationLieder, F., & Griffiths, T. L. (2019). Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 1–85.
dc.relationLieto, A., Bhatt, M., Oltramari, A., & Vernon, D. (2018, May 1). The role of cognitive architectures in general artificial intelligence. Cognitive Systems Research, 48, 1–3. https://doi.org/10.1016/j.cogsys.2017.08.003
dc.relationLópez, A. L. E., Calao, Y. M. V., Salgado, A. A. G., & Piñeres, M. F. C. (2018). Validación de un modelo cognitivo basado en M++ para la generación de preguntas Factoid-Wh. Teknos Revista Científica, 18(2), 11–20.
dc.relationMadera-Doval, D. P., Caro-Piñeres, M. F., Gómez-Salgado, A. A., Cardozo-Soto, A. M., & Jiménez-Builes, J. A. (2018). Design of metacognitive expectations of cognitive functions through ontological representations. Dyna, 85(206), 194–201.
dc.relationMatta, N., Corby, O., & Prasad, B. (1998). A generic library of knowledge components to manage conflicts in CE tasks. Concurrent Engineering, 6(4), 274–287.
dc.relationMiller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.
dc.relationMinsky, M. (1974). A Framework for Representing Knowledge.
dc.relationMuller, T. J., & Heuvelink, A. (2008). Implementing a Cognitive Model in Soar and ACT - R : A Comparison. Retrieved April 2, 2018, from https://www.researchgate.net/profile/Annerieke_Heuvelink/publication/228415515_Implementing_a_Cognitive_Model_in_Soar_and_ACT-R_A_Comparison/links/0fcfd50885793794e5000000.pdf
dc.relationMurray, D. (1985). Review of Elements of episodic memory.
dc.relationNewell, A., & Simon, H. A. (2007). Computer science as empirical inquiry: Symbols and search. In ACM Turing award lectures (p. 1975).
dc.relationNwana, H. S., & Ndumu, D. T. (1999). Perspective on software agents research. Knowledge Engineering Review, 14(2), 125–142. https://doi.org/10.1017/S0269888999142012
dc.relationO’Leary, D. E. (1998). Using AI in knowledge management: Knowledge bases and ontologies. IEEE Intelligent Systems and Their Applications, 13(3), 34–39.
dc.relationOlier, A. J., Gómez, A. A., & Caro, M. F. (2018). Cognitive Modeling Process in Metacognitive Architecture CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 579–585.
dc.relationPaisner, M., Cox, M., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for cognitive systems. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36).
dc.relationPeters, S., & Shrobe, H. E. (2003). Using semantic networks for knowledge representation in an intelligent environment. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003)., 323–329.
dc.relationPew, R. W., & Mavor, A. S. (1998). Modeling Human and Organizational Behavior-Application to Military Simulations.
dc.relationPezzulo, G., & Calvi, G. (2004). A Pandemonium Can Have Goals. ICCM, 237–242.
dc.relationPolk, T. A., & Seifert, C. M. (2002). Cognitive modeling. MIT Press.
dc.relationPrezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling approach to strategy formation in dynamic decision making. Frontiers in Psychology, 8(AUG). DOI://doi.org/10.3389/fpsyg.2017.01335
dc.relationProctor, R. W., & Capaldi, E. J. (2012). Psychology of science: Implicit and explicit processes. Oxford University Press.
dc.relationRao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. KR, 91, 473–484.
dc.relationRitter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.
dc.relationRus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., & Moldovan, C. (2012). A detailed account of the first question generation shared task evaluation challenge. Dialogue & Discourse, 3(2), 177–204.
dc.relationRussell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.
dc.relationScheutz, M. (2001). Computational versus causal complexity. Minds and Machines, 11(4), 543–566.
dc.relationSchmid, U., Ragni, M., Gonzalez, C., & Funke, J. (2011). The challenge of complexity for cognitive systems. Elsevier.
dc.relationShi, Z., Zhou, H., & Wang, J. (1997). Applying case-based reasoning to engine oil design. Artificial Intelligence in Engineering, 11(2), 167–172. https://doi.org/10.1016/S0954-1810(96)00029-5
dc.relationStrube, G. (2000). Generative theories in cognitive psychology. Theory & Psychology, 10(1), 117–125.
dc.relationSun, R. (2007). The motivational and metacognitive control in CLARION. Modeling Integrated Cognitive Systems, 63–75.
dc.relationSun, R. (2008a). Introduction to computational cognitive modeling. Cambridge Handbook of Computational Psychology, 3–19.
dc.relationSun, R. (2008b). The Cambridge handbook of computational psychology. Cambridge University Press.
dc.relationSun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124–140.
dc.relationSun, R., & Helie, S. (2015). Accounting for creativity within a psychologically realistic cognitive architecture. In Computational Creativity Research: Towards Creative Machines (pp. 151–165). Springer.
dc.relationSun, R., & Naveh, I. (2004). Simulating organizational decision-making using a cognitively realistic agent model. Journal of Artificial Societies and Social Simulation, 7(3).
dc.relationSun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive Systems Research, 7(4), 327–338.
dc.relationTanaka, M., Aoyama, N., Sugiura, A., & Koseki, Y. (1995). Integration of multiple knowledge representation for classification problems. Artificial Intelligence in Engineering, 9(4), 243–251. https://doi.org/10.1016/0954-1810(95)00006-5
dc.relationTulving, E., & others. (1972). Episodic and semantic memory. Organization of Memory, 1, 381–403.
dc.relationTuring, I. B. Y. A. M. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.
dc.relationUnsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16–28.
dc.relationVan Lamsweerde, A. (n.d.). Goal-Oriented Requirements Engineering: A Guided Tour. Retrieved April 2, 2018, from http://www.panda.sys.t.u-tokyo.ac.jp/kushiro/ReferencePaper/Requirements engineering/00948567.pdf
dc.relationVanPatten, B., & Williams, J. (2014). Introduction: The nature of theories. In Theories in second language acquisition (pp. 13–28). Routledge.
dc.relationWang, Y. (2008a). On concept algebra: A denotational mathematical structure for knowledge and software modeling. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2(2), 1–19.
dc.relationWang, Y. (2008b). On contemporary denotational mathematics for computational intelligence. In Transactions on computational science II (pp. 6–29). Springer.
dc.relationWong, J. H., Kirschenbaum, S. S., & Peters, S. (2010). Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system.
dc.relationZhou, G., Zhou, Y., He, T., & Wu, W. (2016). Learning semantic representation with neural networks for community question answering retrieval. Knowledge-Based Systems, 93, 75–83.
dc.rightsCopyright Universidad de Córdoba, 2020
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.subjectModelado cognitivo
dc.subjectModelos cognitivos
dc.subjectArquitecturas Cognitivas
dc.subjectArquitecturas metacognitivas
dc.subjectCARINA
dc.subjectCognitive Modeling
dc.subjectCognitive Models
dc.subjectCognitive Architectures
dc.subjectMetacognitive Architectures
dc.subjectCARINA
dc.titleDevelopment of cognitive models for the metacognitive architecture CARINA
dc.typeTrabajo de grado - Pregrado
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeText
dc.typehttps://purl.org/redcol/resource_type/TP
dc.coverageMontería, Córdoba


Este ítem pertenece a la siguiente institución