Serotipificación y perfil de resistencia antimicrobiana de Salmonella spp. aislados de crocodilios en cautiverio

dc.creatorVargas-Abella, Julio César
dc.creatorTarazona-Manrique, Luis Edgar
dc.creatorAndrade-Becerra, Roy José
dc.date2023-01-15
dc.date.accessioned2023-09-06T21:40:39Z
dc.date.available2023-09-06T21:40:39Z
dc.identifierhttps://revistamvz.unicordoba.edu.co/article/view/3045
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8708394
dc.descriptionObjective. Determine the presence of Salmonella spp and the AMR in isolates of cloacal and muscle swabs in specimens of Caiman crocodilus fuscus and Crocodylus acutus in captivity, in Colombia. Materials and methods. A cross-sectional and descriptive sampling was carried out with a non-probabilistic design for convenience, once, during the month of February 2021. 150 Caiman crocodilus fuscus and Crocodylus acutus animals were included, with a 50/50 distribution. Cloacal and muscle samples were taken with sterile swabs. These were planted on MacConkey agar, then on SS agar. These positive samples were then reconfirmed on TSI agar. Serotyping was performed with specific monovalent and polyvalent antisera. The diffusion test was performed on Mueller-Hinton agar. Results. There was no growth of colonies in any muscle sample. The presence of the bacteria in cloacal samples of Caiman crocodilus fuscus was 36% and for Crocodylus acutus 50.6%. The serotypes with the highest detection percentage in both groups were serogroup C1 and polyvalent serogroup B. Some colonies were resistant to tetracycline, while other colonies had intermediate resistance to ampicillin, cefoxitin, sulfa trimethoprim, and tetracycline. Conclusions. This is the first report related to the detection of Salmonella spp. in alligator carcasses in the country, without finding the presence of the agent in any sample evaluated, however, the importance of continuing its monitoring is emphasized to guarantee innocuous productsen-US
dc.descriptionObjetivo. Determinar la presencia de Salmonella spp y el PRA en aislamientos de hisopados cloacales y musculares en especímenes de Caiman crocodilus fuscus y Crocodylus acutus en cautiverio en Colombia. Materiales y métodos. Se realizó un muestreo de tipo transversal y descriptivo con un diseño no probabilístico por conveniencia una única vez, durante el mes de febrero de 2021. Se incluyeron 150 animales de Caiman crocodilus fuscus y Crocodylus acutus, con una distribución 50/50. Se tomaron muestras cloacales y musculares con hisopos estériles. Estas se sembraron en agar MacConkey, posteriormente en agar SS. Luego, se reconfirmaron las muestras positivas en agar TSI. Se realizó la serotipifación con antisueros monovalentes y polivalentes específicos. Se realizó la prueba de difusión en agar Mueller-Hinton. Resultados. No existió crecimiento de colonias en ninguna muestra muscular. La presencia de la bacteria en muestras cloacales de Caiman crocodilus fuscus fue del 36% y para Crocodylus acutus de 50.6%, los dos serotipos con mayor porcentaje de detección en ambos grupos fueron el serogrupo C1 y el serogrupo polivalente B. Ocho colonias fueron resistentes a tetraciclina, mientras que otras colonias tuvieron una resistencia intermedia a ampicilina, cefoxitin, sulfatrimetropim y tetraciclina. Conclusiones. Este es el primer reporte relacionado con la detección de Salmonella spp. en canales de caimanes en el país, sin encontrar presencia del agente en ninguna muestra evaluada, sin embargo, se recalca la importancia de seguir su monitoreo para garantizar productos inocuos.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formataudio/mpeg
dc.formataudio/mpeg
dc.languagespa
dc.languageeng
dc.publisherUniversidad de Córdobaes-ES
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/3045/5216
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/3045/5217
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/3045/5218
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/3045/5219
dc.relationhttps://revistamvz.unicordoba.edu.co/article/view/3045/5220
dc.relation/*ref*/1. Boede E, Sogbe E. Enfermedades en caimanes del orinoco (Crocodylus intermedius) y caimanes de la costa (Crocodylus acutus) mantenidos en zoocriaderos venezolanos. Rev Cient FCV-LUZ. 2000; 1(4):328-338. https://produccioncientificaluz.org/index.php/cientifica/article/view/14718
dc.relation/*ref*/2. Uhart M, Ferreyra H, Mattiello R, Caffés M, Terragno R, Schettino A, Prado W. Isolation of Salmonella spp. from yacare caiman (Caiman yacare) and broad-snouted caiman (Caiman latirostris) from the argentine chaco. J Wildlife Dis. 2011; 47(2):271-277. http://dx.doi.org/10.7589/0090-3558-47.2.271.
dc.relation/*ref*/3. Targino T, Quadros P, Cardoso Y, Saraiva J, Neris D, Curbani F, et al. Predominant bacterial microbiota of the mouth and cloaca from captive Caiman latirostris (Daudin, 1802). Herpetol Notes. 2020; 13:451-455. https://www.biotaxa.org/hn/article/view/58133/61421
dc.relation/*ref*/4. Grijalba J, Forero E, Contreras A, Vargas J, Andrade R. Determination of hematological values of common crocodile (Caiman crocodilus fuscus) in captivity in the Magdalena medio of Colombia. Acta biol Colomb. 2019; 25(1):75-81. http://dx.doi.org/10.15446/abc.v25n1.76045
dc.relation/*ref*/5. Canto A, Costa-Lima B, Suman P, Monteiro M, Marsico T, Conte-Junior C, et al. Fatty acid profile and bacteriological quality of caiman meat subjected to high hydrostatic pressure. J Food Sci Technol. 2015; 63:872–877. https://doi.org/10.1016/j.lwt.2015.05.003
dc.relation/*ref*/6. Hoffman L, Cawthorn D. What is the role and contribution of meat from wildlife in providing high-quality protein for consumption? Anim Front. 2012; 2:40–53. https://doi.org/10.2527/af.2012-0061
dc.relation/*ref*/7. Hoffman L, Cawthorn D. Exotic protein sources to meet all needs. Meat Sci. 2013; 95:764–771. https://doi.org/10.1016/j.meatsci.2013.04.027
dc.relation/*ref*/8. Vilhena A, Guerra M, Carneiro B, Aquiles C, Teixeira E, Pimentel T, et al. 2018. Effect of UV-C radiation on Salmonella spp. reduction and oxidative stability of caiman (Caiman crocodilus yacare) meat. J Food Saf. 2018; e12604. https://doi.org/10.1111/jfs.12604
dc.relation/*ref*/9. Yang S, Sadekuzzaman M, Ha S. Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control. 2017; 78:57–63. https://doi.org/10.1016/j.foodcont.2017.02.021
dc.relation/*ref*/10. Pachón D, Pulido A, Moreno C. Aislamiento y serotipificación de Salmonella sp. en estanques con Crocodylus intermedius y testudines cautivos en Villavicencio – Colombia. Rev MVZ Córdoba. 2011; 16(2):2564-2575. https://revistamvz.unicordoba.edu.co/article/view/1021
dc.relation/*ref*/11. Monteiro M, Mársico E, Mano B, Alvares S, Rosenthal A, Lemos M, et al. Combined effect of high hydrostatic pressure and ultraviolet radiation on quality parameters of refrigerated vacuum-packed tilapia (Oreochromis niloticus) fillets. Sci Rep. 2018; 8:9524. https://doi.org/10.1038/s41598-018-27861-9
dc.relation/*ref*/12. Rodrigues B, Alvares T, Sampaio G, Cabral C, Araujo J, Franco R, et al. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control. 2016; 60:596–605. https://doi.org/10.1016/j.foodcont.2015.09.004
dc.relation/*ref*/13. Santos J, Mársico E, Lemos M, Cinquini M, Silva F, Dutra Y, et al. 2018. Effect of the UV-C radiation on shelf life of vacuum-packed refrigerated pirarucu (Arapaima gigas) fillets. J Aqua Food Prod Tech 27:48–60. https://doi.org/10.1080/10498850.2017.1402840
dc.relation/*ref*/14. Grimont P, Weill F. Antigenic Formulas of the Salmonella Serovars. 9a ed. World Health Organization- Institut Pasteur. París, Francia; 2007. https://www.pasteur.fr/sites/default/files/veng_0.pdf
dc.relation/*ref*/15. Gay N, Le Hello S, Weill F, Thoysi B, Berger F. Salmonella serotypes in reptiles and humans, French Guiana. Vet Microbiol. 2014; 170(1-2):167-171 https://doi.org/10.1016/j.vetmic.2014.01.024
dc.relation/*ref*/16. Merkeviciene L, Butrimaite-Ambrozeviciene C, Paškevicius G, Pikuniene A, Virgailis M, Dailidaviciene J, et al. Serological variety and antimicrobial resistance in salmonella isolated from reptiles. Biology. 2022; 11(6):836. https://doi.org/10.3390/biology11060836
dc.relation/*ref*/17. Bauwens L, Vercammen F, Bertrand S, Collard J, De Ceuster S. Isolation of Salmonella from environmental samples collected in the reptile department of Antwerp Zoo using different selective methods. J Appl Microbiol. 2006; 101(2):284-289. https://dx.doi.org/10.1111/j.1365-2672.2006.02977.x
dc.relation/*ref*/18. Maluta A, Zajac M, Krajewska-Wedzina M, Wasyl D, Heckers K, Didkowska A, et al. Mixed Infection of Mycobacterium szulgai, M. lentiflavum, and Gram-Negative Bacteria as a Cause of Death in a Brown Caiman Caiman crocodylus: A Case Report. J Vet Sci. 2022; 9:133. https://doi.org/10.3390/vetsci9030133
dc.relation/*ref*/19. Silva J, Mota R, Pinheiro J, Almeida M, Ferreira D, Azevedo J. Aerobic bacterial microflora of Broad-snouted caiman (Caiman latirostris) oral cavity and cloaca, originating from parque Zoológico Arruda Câmara, Paraíba, Brazil. Braz J Microbiol. 2009; 40(1):194-198. https://dx.doi.org/10.1590/S1517-838220090001000034.
dc.relation/*ref*/20. Carvalho G, Bérgamo A, Aleixo V, Veiga A, Moreira L, Knöbl T, et al. Hematological parameters and frequency of Salmonella spp. in swabs of caiman yacare after of probiotics. RICA. 2018; 9(5):51-63. http://doi.org/10.6008/CBPC2179-6858.2018.005.0006
dc.relation/*ref*/21. Ríos R, Flores B, Mora-Sánchez B, Torres D, Sheleby-Elías J, Jirón W, et al. Isolation of Salmonella spp. from black spiny-tailed iguana (Ctenosaura similis) meat commercialized in markets of León city, Nicaragua. Vet Med Sci. 2022; 8:695–699. https://doi.org/10.1002/vms3.654
dc.relation/*ref*/22. Morrison BJ, Rubin J. Detection of multidrug-resistant Gram-negative bacteria from imported reptile and amphibian meats. J Appl Micriobiol. 2020; 129(4):1053–1061. https://doi.org/10.1111/jam.14658
dc.relation/*ref*/23. O’Neal L, Alvarez D, Mendizábal-Cabrera R, Ramay BM, Graham J. Community-Acquired Antimicrobial Resistant Enterobacteriaceae in Central America: A One Health Systematic Review. Int J Environ Res Public Health. 2020; 17(20):7622. https://doi.org/10.3390/ijerph17207622
dc.rightsDerechos de autor 2023 Julio César Vargas-Abella, Luis Edgar Tarazona-Manrique, Roy José Andrade-Becerraes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceJournal MVZ Cordoba; Vol. 28 No. 1 (2023): Revista MVZ Córdoba; 28(1) Enero-abril 2023; e3045en-US
dc.sourceRevista MVZ Córdoba; Vol. 28 Núm. 1 (2023): Revista MVZ Córdoba; 28(1) Enero-abril 2023; e3045es-ES
dc.source1909-0544
dc.source0122-0268
dc.source10.21897/rmvz.v28.n1.2023
dc.subjectreptilesen-US
dc.subjectantibiotic susceptibilityen-US
dc.subjectfoodborne diseasesen-US
dc.subjectmeat qualityen-US
dc.subjectreptileses-ES
dc.subjectSusceptibilidad antimicrobianaes-ES
dc.subjectenfermedades transmitidas por alimentoses-ES
dc.subjectcalidad de la carnees-ES
dc.titleSerotyping and antimicrobial resistance profile of Salmonella spp. isolated from crocodilians in captivityen-US
dc.titleSerotipificación y perfil de resistencia antimicrobiana de Salmonella spp. aislados de crocodilios en cautiverioes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución