dc.contributor | Rodríguez Castro, Karen Giselle | |
dc.contributor | Ramirez Malaver, Jorge Luis | |
dc.creator | Ubaque Bernal, Jhoimar De Jesus | |
dc.date.accessioned | 2023-04-13T13:28:57Z | |
dc.date.accessioned | 2023-09-06T21:38:01Z | |
dc.date.available | 2023-04-13T13:28:57Z | |
dc.date.available | 2023-09-06T21:38:01Z | |
dc.date.created | 2023-04-13T13:28:57Z | |
dc.date.issued | 2022 | |
dc.identifier | Ubaque Bernal, Jhoimar de J. (2022). Delimitación de especies del género Potamotrygon (Garman, 1877) mediante el uso de secuencias del gen mitocondrial Citocromo Oxidasa I (COI) [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. | |
dc.identifier | https://repositorio.unillanos.edu.co/handle/001/2849 | |
dc.identifier | Universidad de los Llanos | |
dc.identifier | Repositorio digital Universidad de los Llanos | |
dc.identifier | https://repositorio.unillanos.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8708333 | |
dc.description.abstract | El género Potamotrygon incluye 33 especies de rayas de rio, pero la identificación
de sus especies ha presentado dificultades debido a la escasez de caracteres
puntuales para identificar especies, su sistemática compleja con varios ejemplos de
especies cripticas en todo su rango de distribución. Por tal razón la delimitación de
especies utilizando características alternativas, como las moleculares, es
importante en estos casos. El objetivo de este estudio fue delimitar las especies del
género utilizando datos moleculares, comparar los resultados con las especies
definidas con datos morfológicos y definir MOTUs (ingles Molecular operational
Taxonomic Units) y relacionar su existencia con eventos evolutivos. Con el uso de
255 secuencias del gen citocromo oxidasa I (COI) obtenidas a partir de datos
depositados en NCBI y BOLD de distintos autores y de diferentes localidades,
realizamos la delimitación de especies de Potamotrygon con los métodos PTP,
bPTP y GYMC. Para finalizar, se compararon las MOTUs encontradas con las
regiones biogeográficas. Encontramos 84 haplotipos donde especies diferentes
compartían un mismo haplotipo. Además, en el árbol ultramétrico se delimitaron por
el análisis de GYMC 27 MOTUs, PTP 28MOTUs y bPTP 29 MOTUs. El consenso
delimitó 28 MOTUs, que guardan relación con la región biogeográfica y en menor
medida, con especies nominales. Ciertos MOTUs encontradas corresponden a las
especies nominales de las secuencias trabajadas, sin embargo, algunas presentan
inconsistencias. Sugerimos qué esto se debe a especies cripticas, una alta
variabilidad morfológica y la existencia de complejos de especies. El número de
regiones biogeográficas influencian en el número de MOTUs y algunas MOTUs son
de amplia distribución mientras que algunas son propias de una única cuenca. Otro
aspecto importante es que la historia evolutiva (biogeográfica) de las cuencas han
influido en la alta diversidad de especies del género. Por último, la delimitación de
especies utilizando métodos coalescentes con estas secuencias fue eficiente para
el género Potamotrygon, los MOTUs obtenidos se ajustan adecuadamente a las
regiones biogeográficas y la alta variabilidad de especies es explicada por los
eventos evolutivos ocurridos en sus diferentes cuencas. | |
dc.language | spa | |
dc.publisher | Universidad de los Llanos | |
dc.publisher | Facultad de Ciencias Básicas e Ingeniería | |
dc.publisher | Villavicencio | |
dc.relation | Adnet S, Gismondi R, Antoine P. 2014. Comparisons of Dental Morphology in
River Stingrays (Chondrichthyes: Potamotrygonidae) with New Fossils from the
Middle Eocene of Peruvian Amazonia Rekindle Debate on Their
Evolution.Naturwissenschaften 101 (1): 33–45. | |
dc.relation | Albert J, Lovejoy N, Crampton W. 2006. Miocene tectonism and the separation
of cis - and trans - Andean rivers basin: evidence from Neotropical fishes. Journal of
South American Earth Sciences, 21: 1-14. | |
dc.relation | Albert J, Reis, R. 2011. Historical Biogeography of Neotropical Freshwater
Fishes. University of California Press, Los Angeles, California. | |
dc.relation | Alfonsin M, Bucetto M. 2019. Las especies en peligro de extinción y los
mecanismos para la recuperación y conservación de la biodiversidad: un estudio
sobre la viabilidad de los mecanismos y las trabas burocráticas. Revista LEX:
Universidad Alas Peruanas, 9: 23, 297-324 | |
dc.relation | Altschul S.F, Gish W, Miller W, Myers E.W. Lipman, D.J. 1990. Basic local
alignment search tool. J. Mol. Biol, 215: 403–410. | |
dc.relation | Angermeier P, Winston M. 1998. Local vs. Regional influences on local diversity
in stream fish communities of Virginia. Ecology, 79 (3): 911-927. | |
dc.relation | Araujo M, Charvet-Almeida M, Pereira H. 2004.Freshwater Stingrays
(Potamotrygonidae): Status, Conservation and Management Challenges.
Information document AC20: 8, 1-6 | |
dc.relation | Banerjee D, Kumar V, Singha D, Chandra K, Laskar B, Kundu S, Chakraborty
R, Chatterjee S. 2015. Identification through DNA barcoding of Tabanidae (Diptera)
vectors of surra disease in India. Acta Trop, 150: 52–58 | |
dc.relation | Batista-Morales A, Lasso C, Morales-Betancourt M, Caballero S. 2017.
Phylogeography and genetic structure of the species complex of the freshwater
stingray, Potamotrygon orbignyi (Castelnau, 1855), among Amazonas and Orinoco
rivers. Repositorio Uniandes, 1-56 | |
dc.relation | Beheregaray L, Caccone A. 2007. Cryptic biodiversity in a changing world.
Journal of Biology, 6:9 | |
dc.relation | Bermingham, E. Moritz C. 1998. Comparative phylogeography: Concepts and
applications. Molecular Ecology, 7: 367-369. | |
dc.relation | Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R Abebe E. 2005.
Defining operational taxonomic units using DNA barcode data. Philos. Trans. R.
Soc. Lond. B Biol. Sci 360: 1935–1943. | |
dc.relation | Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C.H, Xie D, Suchard M,
Rambaut A, Drummond AJ. 2014. BEAST 2: A software platform for
bayesianevolutionary analysis. PLoS Comput. Biol, 10(4): e1003537. | |
dc.relation | Caldas J, Castro-González V, Puentes M, Lasso C, Duarte L, Grijalba-Bendeck
M, Gómez F, Navia A, Mejía-Falla P, Bessudo S, Diazgranados M, Zapata-Padilla L
(Eds.). 2010. Plan de Acción Nacional para la Conservación y Manejo de Tiburones,
Rayas y Quimeras de Colombia (PAN-Tiburones Colombia). Instituto Colombiano
Agropecuario, Secretaria Agricultura y Pesca San Andrés Isla, Ministerio de
Ambiente, Vivienda y Desarrollo Territorial, Instituto de Investigaciones Marinas y
Costeras, Instituto Alexander Von Humboldt, Universidad del Magdalena,
Universidad Jorge Tadeo Lozano, Pontifcia Universidad Javeriana, Fundación
SQUALUS, Fundación Malpelo y otros EcosistemasMarinos, Conservación
Internacional, WWF Colombia. Editorial Produmedios, Bogotá. 60 p. | |
dc.relation | Cañedo A, Rodríguez-Labrada R, Vázquez-Mojena Y. 2009. Centro Nacional
para la Información Biotecnológica de los Estados Unidos: un palacio de la
información para la medicina molecular. Revista cubana de los profesionales de la
información y la comunicación en salud, 19(4): 19 | |
dc.relation | Carstens B.C, Pelletier T.A, Reid N.M, Satler J.D. 2013. How to fail at species
delimitation. Mol Ecol. 22:4369–4383 | |
dc.relation | Carvalho M, Lovejoy N, Rosa R. 2003. Family Potamotrygonidae. 22-29. En:
Reis, Feraris R, & Kullander S. Checklist of the Freshwater Fishes of South and
Central America. Porto Alegre, Edipucrs, 729p. | |
dc.relation | Carvalho M, Sabaj-Pérez M, Lovejoy R. 2011. Potamotrygon tigrina, a new
species of freshwater stingray from the Upper Amazon basin, closely related to
Potamotrygon schroederi Fernández-Yépez 1958 (Chondricthyes:
Potamotrygonidae). Zootaxa, 2827:1-30 | |
dc.relation | Carvalho M, Paulo J, Silva C, Loboda T, Silva P, Ragno M, Soares M. 2013.
Systematics and Evolution of the Highly Diverse and Morphologically Complex
Neotropical Freshwater Stingrays (Chondrichthyes: Potamotrygonidae). Modalidad,
Conferencia: 9th Indo-Pacific Fish Conference, en Okinawa, Japan | |
dc.relation | CBD: Convention on Biological Diversity.2011. [citado 12 de Octubre de 2021];
Disponible en: http://www.cbd.int/ | |
dc.relation | Charvet-Almeida P, Araújo M, Almeida M. 2005 Reproductive aspects of
freshwater stingrays (Chondrichthyes: Potamotrygonidae) in the Brazilian Amazon
Basin. Journal of Northwest Atlantic Fishery. Science, 35: 165–171 | |
dc.relation | Cruz V, Vera M, Mendonça F, Pardo B, Martinez P, Oliveira C, Foresti F. 2015.
First identification of interspecies hybridization in the freshwater stingrays
Potamotrygon motoro and P. falkneri (Myliobatiformes, Potamotrygonidae). Conserv
Genet, 16: 241–245 | |
dc.relation | Cruz V, Nobile M, Paim F, Adachi A, Ribeiro G, Ferreira D, Pansonato-Alves J,
Charvet P, Oliveira C, Foresti F. 2021. Cytogenetic and molecular characteristics of
Potamotrygon motoro and Potamotrygon sp. (Chondrichthyes, Myliobatiformes,
Potamotrygonidae) from the Amazon basin: Implications for the taxonomy of the
genus. Genetics and molecular biology, 44(2): e20200083. | |
dc.relation | Darriba D, Taboada L, Doallo R, Posada D. 2012. jModelTest 2: more models,
new heuristics and parallel computing. Nat. Methods, 9(8): 772. | |
dc.relation | Dellicour S, Flot J. 2018. The hitchhiker’s guide to single-locus species
delimitation. Molecular Ecology Resources, 18(6):1234–1246 | |
dc.relation | Díaz J, Villanova V, Brancolini F, del Pazo F, Posner V, Grimberg A, Arranz A.
2016. First DNA Barcode Reference Library for the Identification of South American
Freshwater Fish from the Lower Paraná River. PLoS ONE, 11(7): e0157419. | |
dc.relation | Drummond A.J, Bouckaert R. 2015. Bayesian Evolutionary Analysis with
BEAST. Cambridge, United Kingdom Cambridge University Press. | |
dc.relation | Faria V, Rolim L, Vaz L, Furtado-Neto M. 2012. Reevaluation of RAPD Markers
Involved in a Case of Stingray Misidentification (Dasyatidae: Dasyatis). Genetics and
Molecular Research, 11(4): 3835–45. | |
dc.relation | Fontenelle J, Marques F, Kolmann M, Lovejoy N. 2021a. Biogeography of the
neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals
effects of continent- scale paleogeographic change and drainage evolution. J
Biogeogr, 0(0): 1–14 | |
dc.relation | Fontenelle J, Marques F, Kolmann M, Lovejoy N. 2021b. Biogeography of the
neotropicalfreshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals
effects of continent-scale paleogeographic change and drainage evolution. J
Biogeogr, 0(0):1–14. | |
dc.relation | Flot J.F. 2015. Species delimitation’s coming of age. Syst Biol, 64(6):897–899. | |
dc.relation | Floyd R, Abebe E, Papert A, Blaxter M. 2002. Molecular Barcodes for Soil
Nematode Identification. Mol Ecol, 11(4):839-850 | |
dc.relation | Funk D, Omland E. 2003. Species-level paraphyly and polyphyly: frequency,
causes, and consequences, with insights from animal mitochondrial DNA. Annual
Review of Ecology, Evolution, and Systematics. 34: 397–423 | |
dc.relation | García D, Lasso C, Morales M, Caballero S. 2015: Molecular systematics of the
freshwater stingrays (myliobatiformes: potamotrygonidae) of the Amazon, Orinoco,
Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia – Venezuela):
evidence from three mitochondrial genes. Mitochondrial DNA, 1-13 | |
dc.relation | García-Melo J, Oliveira C, Da Costa S, Ochoa-Orrego L, Garcia L, Maldonado Ocampo J .2019. Species delimitation of neotropical Characins (Stevardiinae):
Implications for taxonomy of complex groups. PLoS ONE, 14(6): e0216786. | |
dc.relation | García-Villamil, D. 2012. Molecular systematics of the freshwater stingrays
(Myliobatiformes: Potamotrygonidae) of the Amazon, Orinoco, Magdalena,
Essequibo, Caribe and Maracaibo basins (Colombia- Venezuela): evidence from
mitochondrial genes. Tesis de Maestría, Universidad de los Andes, Colombia,
Bogotá. 32 pp. | |
dc.relation | Gonçalves P, Oliveira-Marques A, Matsumoto T, Miyaki C. 2015. DNA barcoding
identifies illegal parrot trade. J Hered, 106: 560–564. | |
dc.relation | Graça W, Pavanelli C, Buckup P. 2008. Two new species of Characidium
(Characiformes: Crenuchidae) from Paraguay and Xingu River basins, State of Mato
Grosso, Brazil. Copeia, 2008:326–332 | |
dc.relation | Hartvig I, Czako M, Kjær ED, Nielsen LR, Theilade I .2015. The Use of DNA
Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.). PLoS
ONE, 10(9) | |
dc.relation | Hebert P, Cywinska A, Ball S, de Waard J. 2003. Biological identifications
through DNA barcodes. Proceedings of the Royal Society Lond, 270: 313-321. | |
dc.relation | Hebert P, Penton E, Burns J, Janzen D, Hallwachs W. 2004a. Ten species in
one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly
Astraptes fulgerater. PNAS. 101(41): 12-17 | |
dc.relation | Hebert P, Stoeckle M, Zemlak T, Francis M. 2004b. Identification of Birds
through DNA Barcodes. PLoS Biol, 2(10):312 | |
dc.relation | Hebert P, Ryan Gregory T.2005. The Promise of DNA Barcoding for Taxonom.
Systematic Biology, 54(5): 852–859 | |
dc.relation | Hey J, Waples R, Arnold M, Butlin R, Harrison R. 2003. Understanding and
confronting species uncertainty in biology and conservation. Trends Ecol Evol,
18(11):597–603. | |
dc.relation | Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks. 2010. The Impact of
Conservation on the Status of the World s Vertebrates. Science, 2; 330(6010), 1503-
1509. | |
dc.relation | Hopkins G, Freckleton, R. 2002. Declines in the numbers of amateur and
professional taxonomists: implications for conservation. Animal Conservation, 5:
245-249. | |
dc.relation | Hubert N, Renno J. 2006. Historical biogeography of South American freshwater
fishes. Journal of Biogeography, 33: 1414-1436. | |
dc.relation | Jalali K, Ojha R,Venkatesan T. 2015. DNA Barcoding for Identification of
Agriculturally Important Insects. En: Chakravarthy K. New Horizons in Insect
Science: Towards Sustainable Pest Management, Springer India. Bangalore India,
13-23 | |
dc.relation | Jones M, Ghoorah A, Blaxter M. 2011. JMOTU and taxonerator: turning DNA
barcode sequences into annotated operational taxonomic units. PLOS ONE,
6:e19259 | |
dc.relation | Kaur S. 2015. DNA Barcoding and Its Applications. IJERGS, 3 (2): 3. | |
dc.relation | Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S,
Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A.
2012. Geneious Basic: an integrated and extendable desktop software platform for
the organization and analysis of sequence data. Bioinformatics, 28(12):1647-9. | |
dc.relation | Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN. 2015. Delineating
Species with DNA Barcodes: A Case of Taxon Dependent Method Performance in
Moths. PLoS One, 10: e0122481. | |
dc.relation | Kolokotronis S, Leslie M. 2010. Barcoding bushmeat: Molecular identification of
Central African and South American harvested vertebrates. Conservation Genetics,
11(4): 1389-1404 | |
dc.relation | Kullander S. 1986. Cichlid Fishes of the Amazon River Drainage of Peru.
Swedish Stockholm: Museum of Natural History. | |
dc.relation | Kuntke F, Jonge N, Hesselsøe M, & Nielsen J. 2020. Stream water quality
assessment by metabarcoding of invertebrates. Ecological Indicators, 111: 105982. | |
dc.relation | Lasso, C. 1985. Las rayas de agua dulce. Natura 77: 6–9 | |
dc.relation | Lasso C, Rosa R, Sanchez-Duarte P, Morales-Betancourt M, Agudelo-Cordoba
E. 2013. IX. Rayas de Agua Dulce (Potamotrygonidae) de Suramérica. Parte I. | |
dc.relation | Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam Y Guayana
Francesa: Diversidad, Bioecolog+ia, Uso Y Conservación. Serie Editorial Recursos
Hidrobiológicos Y Pesqueros Continentales de Colombia. Serie Edit. Bogotá D.C.,
Colombia: Instituto de Investigación de los Recursos Biológicos Alexander von
Humboldt (IAvH). | |
dc.relation | Latrubesse E, Stevaux J, Santos M, Assine M. 2005. Grandes sistemas fluviais:
geologia, geomorfologia e paleoidrologia. En Quaternário do Brasil, edited by.
Souza C, Suguio K, Oliveira A, Oliveira P. 276–297. Ribeirão Preto: Holos Editora. | |
dc.relation | Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of
DNA polymorphism data. Bioinformatics, 25(11):1451-2. | |
dc.relation | Lobola T, Carvalho M. 2013. Systematic revisión of the Potamotrygon motoro
(Mûller & Henle, 1841) species complex in the Paraná-Paraguay basin, with
description of two new ocellated species (Chondrichthyes: Myliobatiformes:
Potamotrygonidae). Neotropical Ichthyology 11(4): 693-737. | |
dc.relation | Lohse, K. 2009. Can mtDNA barcodes be used to delimit species? A response
to Pons et al (2006). Systematic Biology, 58(4): 439–442. | |
dc.relation | Lovejoy N, Birminghan E, Martin A. 1998. South American rays came in with the
sea. Nature, 396:421-422. | |
dc.relation | Lundberg J, Marshall L, Guerrero J, Horton B, Malabarba M, Wesselingh F.
1998. The stage for Neotropical fish diversification: A history of tropical South
American rivers pp. 13-48. En: Malabarba M, Reis R, Vari R, Lucena Z, Lucena C
(Eds. Phylogeny and Classification of Neotropical Fishes. Porto Alegre, Brazil,
EDIPUCRS. pp 603 | |
dc.relation | Magoga G, Coral S, Fontaneto D, Montagna M. 2018. Barcoding of
Chrysomelidae of Euro-Mediterranean area: efficiency and problematic species.
Scientific Reports, 8: 13398. | |
dc.relation | Mason N, Fletcher N, Gill, B, Funk W, Zamudio K. 2020. Coalescent-based
species delimitation is sensitive to geographic sampling and isolation by distance.
Systematics and Biodiversity, 18(3): 269–280. | |
dc.relation | Mayr E.1942. Systematics and the origin of species from the viewpoint of a
zoologist. Cambridge, MA: Harvard University Press | |
dc.relation | Meyer C, Paulay G. 2005. DNA barcoding: error rates based on comprehensive
sampling. PLoS Biology, 3(12): e422. | |
dc.relation | Montoya-Burgos J. 2003. Historical biogeography of the catfish genus
Hypostomus (Siluriformes: Loricariidae), with implications on the diversification of
Neotropical ichthyofauna. Molecular Ecology, 12: 1855-1867. | |
dc.relation | Nanney, D. 1982. Genes and phenes in Tetrahymena. Bioscience, 32: 783–78 | |
dc.relation | Nielsen R, Wakeley J. 2001. Distinguishing migration from Isolation: a Markov
Chain Monte Carlo approach. Genet, 158(2): 885–896. | |
dc.relation | Nosil P, Funk D, Ortiz-Barriento D. 2009. Divergent selection and heterogeneous
genomic divergence. Molecular ecology, 18(3): 375-402 | |
dc.relation | Olivieri G, Zimmermann E, Randrianambinina B, Rasoloharijaona S,
Rakotondravony D, Guschanski K, Radespiel U. 2007.The ever-increasing diversity
in mouse lemurs: three new species in north and northwestern Madagascar. Mol
Phylogenet Evol, 43(1):309-27. | |
dc.relation | Pace, N. 1997. A molecular view of microbial diversity and the biosphere.
Science 276: 734–740. | |
dc.relation | Paine M, McDowell J, Graves J. (2007). Specific identification of Western
Atlantic Ocean scombrids using mitochondrial DNA cytochrome oxidase subunit I
(COI) gene region sequences. Bull. Mar. Sci., 80(2): 353-367. | |
dc.relation | Palacio-López K, Rodriguez-López N. 2007. Phenotypic Plasticity in Lippia alba
(Verbenaceae) in Response to Water Availability in Two Light Environments. Acta
Biológica Colombiana: 12, 187-198. | |
dc.relation | Palsbøll P, Martine B, and Fred W. Allendorf. 2007. Identification of Management
Units Using Population Genetic Data. Trends in Ecology and Evolution, 22 (1): 11–
16 | |
dc.relation | Panprommin D, Soontornprasit K, Tuncharoen S, Pithakpol S, Keereelang J.
2019. DNA barcodes for the identification of species diversity in fish from Kwan
Phayao, Thailand Journal of Asia-Pacific Biodiversity, 12(3): 82-389 | |
dc.relation | Pentinsaari M, Hebert P, Mutanen M. 2014. Barcoding beetles: A regional survey
of 1872 species reveals high identification success and unusually deep interspecific
divergences. PLoS One, 9(9): e108651 | |
dc.relation | Pentinsaari M, Vos R, Mutanen M. 2017. Algorithmic single-locus species
delimitation: effects of sampling effort, variation and non monophyly in four methods
and 1870 species of beetles. Molecular Ecology Resources, 17(3): 393–404. | |
dc.relation | Pereira L, Hanner R, Foresti F, Oliveira C. 2013. Can DNA barcoding accurately
discriminate megadiverse Neotropical freshwater fish fauna?. BMC Genetics, 14:20. | |
dc.relation | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously
distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | |
dc.relation | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously
distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | |
dc.relation | Pfenninger M, Schwenk K. 2007. Cryptic animal species are homogeneously
distributed among taxa and biogeographical regions. BMC Evol Biol, 7: 121 | |
dc.relation | Porter T, Hajibabaei, M. 2018. Over 2.5 million COI sequences in GenBank and
growing. PloS one, 13(9), | |
dc.relation | Quattrini A, Wu T, Soong K, Jeng M, Benayahu Y,McFadden C. 2019. A next
generation approach to species delimitation reveals the role of hybridization in a
cryptic species complex of corals. BMC Evolutionary Biology, 19:116 | |
dc.relation | Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol, 56(6):
879–886. | |
dc.relation | Rambaut A, Suchard MA, Xie D. 2014. Tracer v1.6. Available from
http://beast.bio.ed.ac.uk/Tracer | |
dc.relation | Rambaut A. 2019. Figtree v1.4.4. Available from
http://tree.bio.ed.ac.uk/software/figtree/ | |
dc.relation | Ramirez J.L, Santos C.A, Machado C.B, Oliveira A.K, Garavello J.C, Britski
H.A, Galetti P.M. 2020. Molecular phylogeny and species delimitation of the genus
Schizodon (Characiformes, Anostomidae). Mol Phylogenet Evol, 153:106959. | |
dc.relation | Ramirez J.L, Santos C.A, Machado C.B, Oliveira A.K, Garavello J.C, Britski
H.A, Galetti P.M. 2020. Molecular phylogeny and species delimitation of the genus
Schizodon (Characiformes, Anostomidae). Mol Phylogenet Evol, 153:106959. | |
dc.relation | Renza-Millán M, Villa-Navarro F, Lasso C, Morales-Betancourt M, Caballero S.
2016. Capítulo 15. Potamotrygon motoro (Müller & Henle 1841) (Myliobatiformes,
Potamotrygonidae) en las cuencas del Orinoco y Amazonas (Colombia). P 377-388.
En: Lasso C, Rosa R, Morales-Betancourt M, Garrone-Neto D, Carvalho M (Eds).
2016. XV. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte II:
Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina. Serie Editorial
Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Investigación de
los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia.
435 pp | |
dc.relation | Renza-Millán M, Lasso C, Morales-Betancourt M, Villa F, Caballero S. 2019.
Mitochondrial DNA diversity and population structure of the ocellate freshwater
stingray Potamotrygon motoro (Müller & Henle, 1841) (Myliobatiformes:
Potamotrygonidae) in the Colombian Amazon and Orinoco Basins. Mitochondrial
DNA Part A, 30(3): 466-473 | |
dc.relation | Rincón, G. 2006. Aspectos Taxonómicos, Alimentação E Reprodução Da Raia
de Agua Doce Potamotrygon Orbignyi (Castelnau), (Elasmobranchii:
Potamotrygonidae) No Rio Paranã-Tocantins. Universidade Estadual Paulista Julio
de Mesquita Filho. | |
dc.relation | Rodrigues M.S, Morelli K, Jansen AM. 2017. Cytochrome c oxidase subunit 1
gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely
related species. Parasites Vectors, 10: 488 | |
dc.relation | Rocha A, Garber N, Garber A, Stuck K. 2005. Structure of the mitochondrial
control region and flanking tRNA genes of Mugil cephalus. Hidrobiológica, 15(2):
139-149 | |
dc.relation | Rocha A, Garber N, Garber A, Stuck K. 2005. Structure of the mitochondrial
control region and flanking tRNA genes of Mugil cephalus. Hidrobiológica, 15(2):
139-149 | |
dc.relation | Rosa R. 1985. A systematic revision of the South American freshwater stingrays
(Chondrichthyes: Potamotrygonidae). Tesis Doctoral, College of William and Mary,
Williamsburg, Virginia, 523 pp. | |
dc.relation | Rosa R, Charvet-Almeida P, Quijada C. 2010. Biology of the South American
potamotrygonid stingrays. pp 24186. En: Carrier J, Musick J, Heithaus R. Sharks
and their relatives II. Biodiversity, adaptive physiology and conservation. CRC Press.
639 pp. | |
dc.relation | Rosenblum E, Sarver B, Brown J, Roches S, Hardwick K Tyler D Hether,
EastmanJ, Pennell M, HarmonL. 2012. Goldilocks meets SantaRosalia: an
ephemeral speciation model explains patterns of diversification across time scales.
Evol. Biol, 39:255–61 | |
dc.relation | Rosser N, Freitas A, Huertas B, Joron, M, Lamas, G, Mérot C, Simpson F,
Willmott K, Mallet J, & Dasmahapatra, K.(2019). Cryptic speciation associated with
geographic and ecological divergence in two Amazonian Heliconius butterflies.
Zoological Journal of the Linnean Society, 186:(1) 233–249 | |
dc.relation | Sanches D, Martins T, Lutz Í, Veneza I, Silva R.D, Araújo F, Muriel-Cunha J,
Sampaio I, Garcia M, Sousa L.M, Evangelista-Gomes, G. 2021. Mitochondrial DNA
suggests Hybridization in Freshwater Stingrays Potamotrygon
(POTAMOTRYGONIDAE: MYLIOBATIFORMES) from the Xingu river, Amazonia
and reveals speciation in Paratrygon aireba. Anais da Academia Brasileira de
Ciências, 93(3): e20191325 | |
dc.relation | Schaefer S, Weitzman S, Britski H. 1989. Review of the Neotropical catfish
genus Scoloplax (Pisces: Loricarioidea: Scoloplacidae) with comments on reductive
characters in phylogenetic analysis. Proceedings of the Academy of Natural
Sciences of Philadelphia, 141:181–211. | |
dc.relation | Schlick-Steiner B.C, Steiner F.M, Seifert B, Stauffer C, Christian E, Crozier R.H.
2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu
Rev Entomol, 55: 421-38 | |
dc.relation | Schoch C.L, Seifert K.A, Huhndorf S, Robert V, Spouge JL, Chen W, Consortium
B. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal
DNA barcode marker for Fungi. Proc NatlAcad Sci USA, 109(16):6241–6246. | |
dc.relation | Schwentner M, Brian B, Richter S. 2011. An integrative approach to species
delineation incorporating different species concepts: a case study of Limnadopsis
(Branchiopoda: Spinicaudata), Biological Journal of the Linnean Society, 104 (3):
575–599, | |
dc.relation | Silva-Santos R, Ramirez J, Galetti P, Freitas P. 2018. Molecular Evidences of a
Hidden Complex Scenario in Leporinus cf. friderici. Front. Genet, 9:47 | |
dc.relation | Sigovini M, Keppel E, Tagliapietra D. 2016. Open Nomenclature in the
biodiversity era. Methods in Ecology and EvolutioN, 7(10): 1217-1225 | |
dc.relation | Silva T. 2017. Species descriptions and digital environments: alternatives for
accessibility of morphological data. Revista Brasileira de Entomologia, 61(4): 277–
281 | |
dc.relation | Smith K. 2008. A Brief History of NCBI’s Formation and Growth. In The NCBI
Handbook. 2nd edition. Bethesda, United States. National Center for Biotechnology
Information. | |
dc.relation | Song H, Mu X, Wei M, Wang X, Luo J, Hu Y. 2015. Complete mitochondrial
genome of the ocellate river stingray (Potamotrygon motoro). Mitochondrial DNA,
26(6): 857-8. | |
dc.relation | Sukumaran J, Knowles L. 2017. Multispecies coalescent delimits structure
notspecies. PNAS, 114(1):1607–12.Tavares ES, Baker AJ. 2008. Single
mitochondrial gene barcodes reliably identify sister-species in diverse clades of
birds. BMC Evol Biol, 8(1): 81. | |
dc.relation | Thompson J.D, Higgins D.G, Gibson T.J. 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22): 4876-4880. | |
dc.relation | Toffoli D, Hrbek T, Araújo, Góes de M, Pinto de M, Charvet-Almeida P, Pires I.
2008. A test of the utility of DNA barcoding in the radiation of the freshwater stingray
genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genetics and Molecular
Biology, 31(1): 324-336 | |
dc.relation | Toffoli D, Hrbek T, Araújo, Góes de M, Pinto de M, Charvet-Almeida P, Pires I.
2008. A test of the utility of DNA barcoding in the radiation of the freshwater stingray
genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genetics and Molecular
Biology, 31(1): 324-336 | |
dc.relation | Ward R, Zemlak T, Innes B, Last P, Hebert P. 2005. DNA barcoding Australia’s
fish species. Philos Trans Roy Soc Lond Ser B Biol Sci, 360:1847–1857 | |
dc.relation | Ward R, Hanner R, Hebert P. 2009. The campaign to DNA barcode all fishes,
FISH-BOL. J Fish Biol, 74(2):329–56. | |
dc.relation | Wesselingh F, Räsänen M, Irion G, Vonhof H, Kaandorp R, Renema W,
Pitmann L, Gingras M. 2002. Lake Pebas: A palaeoecological reconstruction of a
Miocene, long-lived lake complex in western Amazonia. Cainozoic Research, 1:35–
81. | |
dc.relation | Wesselingh F, Salo J. 2006. A Miocene perspective on the evolution of the
Amazonian biota. Scripta Geologica, 133:439–458. | |
dc.relation | Wilson E. 2003. The encyclopedia of life. Trends in Ecology and Evolution, 18(1):
77–80. | |
dc.relation | Zhang J, Hanner R. 2011. DNA barcoding is a useful tool for the identification of
marine fishes from Japan. Biochemical Systematics and Ecology, 39(1): 31–42. | |
dc.relation | Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation
method with applications to phylogenetic placements. Bioinformatics, 29: 2869–
2876. | |
dc.relation | Zhao Y, Yi Z, Warren A, Song W. 2018. Species delimitation for the molecular
taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes
(Alveolata, Ciliophora). Proc Biol Sci, 285(1871):20172159. | |
dc.relation | Zemlak T, Ward R, Connell A, Holmes B, Hebert P. 2009. DNA barcoding
reveals overlooked marine fishes. Mol Ecol Resour, 9(1): 237-42. | |
dc.relation | Ziesler R; Ardizzone G. 1979. Las aguas continentales de América Latina. FAO,
Rome | |
dc.relation | N/A | |
dc.rights | https://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Derechos Reservados - Universidad de los Llanos, 2022 | |
dc.title | Delimitación de especies del género Potamotrygon (Garman, 1877) mediante el uso de secuencias del gen mitocondrial Citocromo Oxidasa I (COI) | |
dc.type | Trabajo de grado - Pregrado | |