dc.contributor | Grupo de Investigación Ecitrónica | |
dc.creator | Ramos Acosta, Diego Alonso | |
dc.creator | Susa Rincón, José Luis | |
dc.date.accessioned | 2023-07-28T20:19:51Z | |
dc.date.accessioned | 2023-09-06T21:17:24Z | |
dc.date.available | 2023-07-28T20:19:51Z | |
dc.date.available | 2023-09-06T21:17:24Z | |
dc.date.created | 2023-07-28T20:19:51Z | |
dc.date.issued | 2010 | |
dc.identifier | 0121-5132 | |
dc.identifier | https://repositorio.escuelaing.edu.co/handle/001/2524 | |
dc.identifier | https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8707317 | |
dc.description.abstract | En este artículo se presentan el desarrollo, prueba y resultados obtenidos de un algoritmo de evasión de obstáculos basado en el método de campo de potencial (PFM, por su sigla en inglés) y combinado con el método de seguimiento de contornos, para resolver el problema del mínimo local que posee el PFM. Adicionalmente, se divulgan los resultados de la investigación, cuyo propósito fue desarrollar un algoritmo que permitiera a un robot
móvil desplazarse en forma autónoma, con el fin de alcanzar una meta, evitando los obstáculos que encontrara en su trayectoria. Los requerimientos para el diseño del algoritmo fueron alta velocidad de respuesta, bajo consumo de recursos de hardware y capacidad de respuesta ante situaciones no previstas. Las simulaciones demuestran que el algoritmo soluciona el problema del mínimo local, inherente al uso del PFM, y puede implementarse en un robot real, cumpliendo con las características citadas previamente. | |
dc.description.abstract | This article presents the development, testing and results from an obstacle avoidance algorithm based on potential field method (PFM), combined with the contour following method to solve the problem of local minimum in the PFM. In this paper, we report the findings of the research, whose objective was to develop an algorithm that allowed a mobile robot to navigate autonomously to reach a goal, avoiding obstacles in its path.
Requirements for the design of the algorithm were high response speed, low consumption of hardware resources and capacity answer to unforeseen situations.
The simulations show that the algorithm solves the problem of local minimum-inherent in the use of PFM-and it can be implemented in a real robot, since it fulfills the mentioned characteristics. | |
dc.language | spa | |
dc.publisher | Universidad Escuela Colombiana de Ingeniería Julio Garavito | |
dc.publisher | Bogotá | |
dc.relation | 56 | |
dc.relation | 78 | |
dc.relation | 49 | |
dc.relation | N/A | |
dc.relation | Revista de la Escuela Colombiana de Ingeniería | |
dc.relation | Khatib, O. (1985). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, IEEE International Conference on Robotics and Automation. | |
dc.relation | Moravec, H.P. & Elfes, A. (1985). High Resolution Maps from Wide Angle Sonar, IEEE Conference on Robotics and Automation. Washington, D.C., pp. 116-121. | |
dc.relation | Reynolds, C.W. (1986). Steering Behaviors For Autonomous Characters, Sony Computer Entertainment America. | |
dc.relation | Elfes, A. (1987). Sonar-based Real-World Mapping and Navigation, IEEE Journal of Robotics and Automation, vol. RA-3, No. 3, pp. 249-265. | |
dc.relation | Moravec, H.P. (1988). Sensor Fusion in Certainty Grids for Mobile Robots, AI Magazine, Summer, pp. 61-74. | |
dc.relation | Borenstein, J. & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots, IEEE Trans. on Systems, Man and Cybernetics, 19( 5 ): 1179-1187. | |
dc.relation | Borenstein, J. & Koren, Y. (1990). Real-time obstacle avoidance for fast mobile robots in cluttered environments, Proceedings of IEEE International Conference on Robotics and Automation. Cincinnati, Ohio, pp. 572-577. | |
dc.relation | Borenstein, J. & Koren, Y. (1991, June). The Vector Field Histogram - Fast Obstacle Avoidance For Mobile Robots, IEEE Journal of Robotics and Automation, vol. 7, No. 3, pp. 278-288. | |
dc.relation | Connolly, C.I. (1992). Applications of harmonic functions to robotics, Proceedings of the IEEE International Symposium on Intelligent Control, pp. 498-502. | |
dc.relation | Yun, X.P. & Tan, K.C. (1997). A wall-following method for escaping local minima in potential field based motion planning, Proceedings of International Conference on Advanced Robotics. Monterrey, pp. 421-426. | |
dc.relation | Ulrich, I. & Borenstein, J. (1998). VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots, Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, May 16-21, pp. 1572-1577. | |
dc.relation | Ulrich, I. & Borenstein, J. (2000). VFH*: Local Obstacle Avoidance with Look-Ahead Verification, IEEE International Conference on Robotics and Automation. San Francisco, CA, April 24-28, pp. 2505-2511. | |
dc.relation | Im, K.Y. & Oh, S.Y. (2000). An Extended Virtual Force Field Based Behavioral Fusion with Neural Networks and Evolutionary Programming for Mobile Robot Navigation, Evolutionary Computation, IEEE Congress, vol. 2, pp. 1238-1244. | |
dc.relation | Chengqing, L., Hang, M., Krishnan, H. & Ser Yong, L. (2000). Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation, Proceedings of the 2000 IEEE. International Conference on Robotics & Automation. | |
dc.relation | Zou Xi-yong, Zhu Jing (2003). Virtual local target method for avoiding local minimum in potential field based robot navigation, ISSN 1009 - 3095, Journal of Zhejiang University Science, vol. 4, No. 3, pp. 264-269. | |
dc.relation | Seul Jung, Eun Soo Jang, Hsia, T.C. (2005). Collision Avoidance of a Mobile Robot Using Intelligent Hybrid Force Control Technique, Proceedings of the 2005 IEEE. International Conference on Robotics and Automation. Barcelona. | |
dc.relation | Zhiqiang Yu, Gao Meng, Huaping Liu, Xiaoyan Deng, Jianhua Liu,Qiurui Wu & Yuewei Liu (2008). Dynamic Obstacle Avoidance in Polar Coordinates for Mobile Robot Based on Laser Radar, IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. | |
dc.relation | Hiroaki Seki, Satoshi Shibayama, Yoshitsugu Kamiya & Masatoshi Hikizu (2008). Practical Obstacle Avoidance Using Potential Field for a Nonholonmic Mobile Robot with Rectangular Body, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao. China. | |
dc.relation | Filliat, D. (2008). Interactive learning of visual topological navigation, París: Ensta - UEI. | |
dc.relation | Fan Wen, Zhenshen Qu, Changhong Wang & Bin Hu (2008). Study on Real-Time Obstacle Avoidance of Mobile Robot Based on Vision Sensor, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao. China. | |
dc.relation | Ayomoh, M.K.O. & Olunloyo, V.O.S. (2009). Autonomous Mobile Robot Navigation Using Hybrid Virtual Force Field Concept, European Journal of Scientific Research, ISSN 1450-216X, vol. 31, No. 2, pp. 204-228, EuroJournals Publishing, Inc., http:// www.eurojournals.com/ejsr.htm. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.source | https://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/ | |
dc.title | Navegación de un robot móvil autónomo utilizando el concepto de campo de fuerza combinado | |
dc.type | Artículo de revista | |