dc.contributorGrupo de Investigación Ecitrónica
dc.creatorPérez Ruíz, Alexander
dc.creatorRosell, Jan
dc.creatorAkbari, Aliakbar
dc.creatorPalomo-Avellaneda, Leopold
dc.creatorGarcía, Néstor
dc.creatorhttps://orcid.org/0000-0001-6214-1077
dc.date.accessioned2023-05-09T16:58:08Z
dc.date.accessioned2023-09-06T21:17:12Z
dc.date.available2023-05-09T16:58:08Z
dc.date.available2023-09-06T21:17:12Z
dc.date.created2023-05-09T16:58:08Z
dc.date.issued2014
dc.identifier0921-0296
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2307
dc.identifierhttps://doi.org/10.1109/ETFA.2014.7005143
dc.identifier1573-0409
dc.identifierhttps://ieeexplore.ieee.org/document/7005143
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707284
dc.description.abstractThis paper presents the software tool used at the Institute of Industrial and Control Engineering (IOC-UPC) for teaching and research in robot motion planning. The tool allows to cope with problems with one or more robots, being a generic robot defined as a kinematic tree with a mobile base, i.e. the tool can plan and simulate from simple two degrees of freedom free-flying robots to multi-robot scenarios with mobile manipulators equipped with anthropomorphic hands. The main core of planners is provided by the Open Motion Planning Library (OMPL). Different basic planners can be flexibly used and parameterized, allowing students to gain insight into the different planning algorithms. Among the advanced features the tool allows to easily define the coupling between degrees of freedom, the dynamic simulation and the integration with task planers. It is principally being used in the research of motion planning strategies for hand-arm robotic systems.
dc.description.abstractEn este trabajo se presenta la herramienta software utilizada en el Instituto de Ingeniería Industrial y de Control (IOC-UPC) para la docencia e investigación en planificación de movimiento de robots. La herramienta permite afrontar problemas con uno o más robots, siendo un robot genérico definido como un árbol cinemático con una base móvil, es decir, la herramienta puede planificar y simular desde simples robots de dos grados de libertad en vuelo libre hasta escenarios multi-robot con manipuladores móviles equipados con manos antropomórficas. El núcleo principal de planificadores lo proporciona la Open Motion Planning Library (OMPL). Los diferentes planificadores básicos pueden utilizarse y parametrizarse de forma flexible, lo que permite a los estudiantes conocer los diferentes algoritmos de planificación. Entre las funciones avanzadas, la herramienta permite definir fácilmente el acoplamiento entre grados de libertad, la simulación dinámica y la integración con planificadores de tareas. Se utiliza principalmente en la investigación de estrategias de planificación de movimientos para sistemas robóticos mano-brazo.
dc.languageeng
dc.publisherEspaña
dc.relation8
dc.relation1
dc.relation1
dc.relationN/A
dc.relationJournal Of Intelligent & Robotic Systems
dc.relationM. Quigley, B. Gekey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,” Workshop on Open Source Robotics. IEEE Int. Conf. on Robotics and Automation, May 2009.
dc.relationH. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion control core of the Orocos project,” in IEEE Int. Conf. on Robotics and Automation, 2003, pp. 2766–2771.
dc.relationB. Leon, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales, ´ T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and R. Dillmann, “OpenGRASP: A toolkit for robot grasping simulation,” in Simulation, Modeling, and Programming for Autonomous Robots, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol. 6472, pp. 109–120.
dc.relationM. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot experimentation platform V-REP: A versatile 3D robot simulator,” in Simulation, Modeling, and Programming for Autonomous Robots, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol. 6472, pp. 51–62.
dc.relationI. A. Suc¸an and S. Chitta, “MoveIt!” http://moveit.ros.org.
dc.relationI. A. Suc¸an, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, December 2012.
dc.relationN. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2004, pp. 2149–2154.
dc.relationA. Perez and J. Rosell, “A Roadmap to Robot Motion Planning Soft- ´ ware Development,” Computer Applications in Engineering Education, vol. 18, no. 4, pp. 651–660, 2010.
dc.relationJ. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques for robot path planning,” in Advanced Robotics, 1991. ’Robots in Unstructured Environments’, Fifth International Conference on, June 1991, pp. 1012–1017 vol.2.
dc.relationC. I. Connolly and R. A. Grupen, “The use of harmonic functions in robotics,” Journal of Robotic Systems, vol. 10, no. 7, pp. 931–946, 1993.
dc.relationL. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars, “Probabilistic roadmaps for path planning in high - dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, August 1996.
dc.relationS. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” TR 98-11, Computer Science Dept., Iowa State University, October 1998.
dc.relationJ. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2000, pp. 995–1001.
dc.relationS. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, June 2011.
dc.relationG. Sanchez and J.-C. Latombe, “A single-query bi-directional probabilistic roadmap planner with lazy collision checking,” in Int. Symp. Robotics Research, 2001, pp. 403–417.
dc.relationD. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration spaces,” in Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, vol. 3, Apr 1997, pp. 2719– 2726 vol.3.
dc.relationI. Suc¸an and L. Kavraki, “A sampling-based tree planner for systems with complex dynamics,” Robotics, IEEE Transactions on, vol. 28, no. 1, pp. 116–131, Feb 2012.
dc.relationJ. J. Kuffner, “Effective sampling and distance metrics for 3D rigid body path planning,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 4, 2004, pp. 3993–3998.
dc.relationJ. Rosell, R. Suarez, C. Rosales, J. A. Garc ´ ´ıa, and A. Perez, “Motion ´ planning for high dof anthropomorphic hands,” in Proc. IEEE Int. Conf. Robotics and Automation, 2009, pp. 4025–4030.
dc.relationT. Y. Yeh, G. Reinman, S. J. Patel, and P. Faloutsos, “Fool me twice: Exploring and exploiting error tolerance in physics-based animation,” ACM Trans. Graph., vol. 29, no. 1, pp. 5:1–5:11, Dec. 2009.
dc.relationE. Drumwright, J. Hsu, N. Koenig, and D. Shell, “Extending open dynamics engine for robotics simulation,” in Simulation, Modeling, and Programming for Autonomous Robots, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol. 6472, pp. 38–50.
dc.relationM. Beetz, D. Jain, L. Mosenlechner, and M. Tenorth, “Towards Per- ¨ forming Everyday Manipulation Activities,” Robotics and Autonomous Systems, vol. 58, no. 9, pp. 1085–1095, 2010.
dc.relationR. Suarez, J. Rosell, A. P ´ erez, , and C. Rosales, “Efficient search of ´ obstacle-free paths for anthropomorphic hands,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and System, 2009, pp. 1773–1778.
dc.relationJ. Rosell, R. Suarez, C. Rosales, and A. P ´ erez, “Autonomous motion ´ planning of a hand-arm robotic system based on captured human-like hand postures,” Autonomous Robots, vol. 31, no. 1, pp. 87–102, 2011.
dc.relationJ. Rosell, R. Suarez, and A. P ´ erez, “Path planning for grasping op- ´ erations using an adaptive PCA-based sampling method,” Autonomous Robots, vol. 35, no. 1, pp. 27–36, 2013.
dc.relationJ. Rosell, A. Perez, P. Cabras, and A. Rosell, “Motion planning for the ´ virtual bronchoscopy,” in IEEE Int. Conf. on Robotics and Automation, 2012, pp. 2932–2937.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://ieeexplore.ieee.org/document/7005143
dc.titleThe Kautham Project: A teaching and research tool for robot motion planning
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución