dc.contributorGrupo de Investigación Ecitrónica
dc.creatorAmaya, C. A.
dc.creatorAperador Chaparro, William Arnulfo
dc.creatorZambrano, Gustavo
dc.creatorEspinoza Beltrán, F. J
dc.creatorCaicedo, Julio Cesar
dc.creatorMuñoz Saldaña, Juan
dc.creatorPrieto Pulido, Pedro
dc.date.accessioned2023-05-15T16:42:30Z
dc.date.accessioned2023-09-06T21:16:57Z
dc.date.available2023-05-15T16:42:30Z
dc.date.available2023-09-06T21:16:57Z
dc.date.created2023-05-15T16:42:30Z
dc.date.issued2009
dc.identifier0010-938X
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2329
dc.identifierhttps://doi.org/10.1016/j.corsci.2009.08.028
dc.identifier1879-0496
dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S0010938X09003898
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707239
dc.description.abstractThermal Barrier Coatings (TBC) of 8% Yttria-Stabilized Zirconia (8YSZ) were deposited on AISI-304 substrates via r.f magnetron sputtering. A buffer layer of alumina, Al2O3, was deposited to improve the adhesion of the YSZ monolayer to the substrate. The influence of the Al2O3/8YSZ coating on the electrochemical conductance evolution, CT t , was examined by Electrochemical Impedance Spectroscopy measurements when the steels are exposed to temperatures of 700 and 500 C for 2, 4, and 6 h. Results indicated that CT t diminished three orders of magnitude, in samples coated with Al2O3/8YSZ with respect to uncoated steel.
dc.description.abstractSe depositaron recubrimientos de barrera térmica (TBC) de circonio estabilizado con itria al 8% (8YSZ) sobre sustratos AISI-304 mediante pulverización catódica por magnetrón r.f.. Se depositó una capa tampón de alúmina, Al2O3, para mejorar la adhesión de la monocapa de YSZ al sustrato. La influencia del recubrimiento de Al2O3/8YSZ en la evolución de la conductancia electroquímica, CTt , se examinó mediante mediciones de Espectroscopía de Impedancia Electroquímica cuando los aceros se exponen a temperaturas de 700 y 500 C durante 2, 4 y 6 h. Los resultados indicaron que CTt disminuyó tres órdenes de magnitud, en las muestras recubiertas con Al2O3/8YSZ con respecto al acero sin recubrir.
dc.languageeng
dc.publisherElSevier
dc.publisherInglaterra
dc.relation2999
dc.relation12
dc.relation2994
dc.relation51
dc.relationN/A
dc.relationCorrosion Science
dc.relationThomas Kamps, Keith Thomas, Model Jet Engines, third ed., Traplet Publications, New York, 2005. p. 70.
dc.relationG. Scheffknecht, Q. Chen, G. Weissinger, in: A. Strang, (Ed.), Proceedings of the Sixth International Charles Parsons Turbine Conference, Maney, London, 2003, p. 113.
dc.relationLech Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, New York, 1995. p. 314.
dc.relationDouglas E. Wolfe, Jogender Singh, Robert A. Miller, Jeff I. Eldrigdge, Dong-Ming Zhu, Surf. Coat. Technol. 190 (2005) 132.
dc.relationX.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24 (2004) 1.
dc.relationG.W. Goward, Surf. Coat. Technol. 108 (1998) 73.
dc.relationZ. Yu, D.D. Hass, H.N.G. Wadley, Mater. Sci. Eng. A 394 (2005) 43.
dc.relationP. Scardi, L. Lutterotti, Surf. Coat. Technol. 61 (1993) 52.
dc.relationD.D. Hass, A.J. Slifka, H.N.G. Wadley, Acta Mater. 49 (2001) 973.
dc.relationA. Meher, H. Klumper-Westkamp, F. Hoffmann, P. Mayr, Thin Solid Films 308 (1997) 673.
dc.relationG. Soyez, J.A. Eastman, L.J. Thompson, G.R. Bai, P.M. Baldo, A.W. McCormick, R.J. DiMelfi, A.A. Elmustafa, M.F. Tambwe, D.S. Stone, Appl. Phys. Lett. 77 (8) (2000) 1155.
dc.relationHo-Soon Yang, G.-R. Bai, L.J. Thompson, J.A. Eastman, Acta Mater. 50 (2002) 2309.
dc.relationDavid G. Cahill, Wayne K. Ford, Kenneth E. Goodson, Gerald D. Mahan, Arun Majumdar, Humprey J. Maris, Roberto Merlin, Simon R. Phillpot, J. Appl. Phys. 93 (2003) 2.
dc.relationS.-H. Song, P. Xiao, L.-Q. Weng, J. Eur. Ceram. Soc. 25 (2005) 1167.
dc.relationC. Amaya, J.C. Caicedo, G. Bejarano, C.A. Cortés Escobedo, J. Muñoz-Saldaña, G. Zambrano, P. Prieto, Phys. Status Solidi (c) 4 (11) (2007) 4288.
dc.relationB. Jayaraj, V.H. Desai, C.K. Lee, Y.H. Sohn, Mat. Sci. Eng. A. 372 (2004) 278–286.
dc.relationA. Conde, J.J. de Damborenea, Corros. Sci. 44 (2002) 1555.
dc.relationR. de Levie, Electrochim. Acta 10 (1965) 395.
dc.relationJ.E.B. Randles, Discuss. Faraday Soc. 1 (1947) 11–18.
dc.relationD.V. Shtansky, Multicomponent nanostructured thin films, in: A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore (Eds.), Deposition, Characterization, Testing and Application. Nanostructured Thin Films and Nanodispersion Strengthened Coatings, NATO Series, Kluwert Academic Publishers, 2004. pp. 155–166.
dc.relationS. Surviliene, S. Bellozor, M. Kurtinaitiene, V.A. Safonov, Surf. Coat. Technol. 176 (2004) 193–201.
dc.relationE.B. Ramírez, A. Huanosta, J.P. Sebastián, L. Huerta, A. Ortiz, J.C. Alonso, J. Mater. Sci. 42 (3) (2007) 901.
dc.relationLuis E.M. Palomino, Patricia H. Suegama, Idalina V. Aoki, Zoltán Pászti, Hercílio G. de Melo, Electrochim. Acta 52 (2006) 7496.
dc.relationR. Heung, X. Wang, P. Xiao, Electrochim. Acta 51 (2006) 1789.
dc.relationB. Jayaraj, S. Vishweswaraiah, V.H. Desai, Y.H. Sohn, Surf. Coat. Technol. 177 (2004) 140.
dc.relationJ. Zhang, V. Desai, Surf. Coat. Technol. 190 (2005) 90.
dc.relationMd. Shawkat Ali, Shenhua Song, Ping Xiao, J. Eur. Ceram. Soc. 22 (2002) 101.
dc.relationN.Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
dc.relationB.A. Pint, J.R. DiStefano, I.G. Wright, Mater. Sci. Eng. A 415 (2006) 255.
dc.relationHuibin Xu, Hongbo Guo, Fushun Liu, Shengkai Gong, Surf. Coat. Technol. 130 (2000) 133.
dc.relationB.A. Movchan, G.S. Marinski, Surf. Coat. Technol. 100 (1998) 309.
dc.relationJ.S. Sheasby, D.B. Jory, Oxid. Met. 12 (1977) 527.
dc.relationD. Nicolas-Chaubet, A.M. Huntz, F. Millot, J. Mater. Sci. 26 (22) (1991) 6113.
dc.relationP.F. Tortorelli, U.K. Natesan, Mater. Sci. Eng. A 258 (1998) 115.
dc.relationK. Natesan, Mater. Sci. Eng. A 258 (1998) 126.
dc.relationP.F. Tortorelli, J.H. DeVan, Mater. Sci. Eng. A 153 (1992) 573.
dc.relationShenhua Song, Ping Xiao, Mater. Sci. Eng. B 97 (2003) 46.
dc.relationP.G. Klemens, M. Gell, Mater. Sci. Eng. A 245 (1998) 143.
dc.relationU. Schulz, J. Am. Ceram. Soc. 83 (4) (2000) 904.
dc.relationPaolo Scardi, Matteo Leoni, Federico Cernuschi, Angelamaria Figari, J. Am. Ceram. Soc. 84 (4) (2001) 827.
dc.relationZ.F. Zhou, E. Chalkova, S.N. Lvov, P. Chou, R. Pathania, Corros. Sci. 49 (2) (2007) 830–843.
dc.relationR. Podor, N. David, C. Rapin, M. Vilasi, P. Berthod, Corros. Sci. 49 (8) (2007) 3226–3240.
dc.relationL.M. Palomino, P.H. Suegama, I.V. Aoki, M.F. Montemor, H.G. De Melo, Corros. Sci. 51 (6) (2009) 1238–1250.
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0010938X09003898
dc.titleCorrosion study of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) nanostructured Thermal Barrier Coatings (TBC) exposed to high temperature treatment
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución