dc.contributorEcitrónica
dc.creatorPaz Penagos, Hernán
dc.creatorGuerrero Rodríguez, Néstor
dc.date.accessioned2023-03-10T19:58:52Z
dc.date.accessioned2023-09-06T21:16:49Z
dc.date.available2023-03-10T19:58:52Z
dc.date.available2023-09-06T21:16:49Z
dc.date.created2023-03-10T19:58:52Z
dc.date.issued2020
dc.identifier0121-750X
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2225
dc.identifier10.14483/23448393.17076
dc.identifier2344-8393
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707222
dc.description.abstractContext: This paper presents the design and development of an electronic device that operates as a satellite backup channel for automatic vehicle location (AVL) equipment, whose only communication channel is the cellular network. Method: The design, manufacture and assembly of the hardware followed 4 phases, and it was aligned with the IPC 2221 standard. This allowed improving the design experience and guaranteed the correct electrical operation in the final product. Results: The information sent by the developed device corresponds to the data generated by the AVL device, which indicates that the information processing was correctly designed. Additionally, it was possible to obtain a functional and versatile device in which the blocks were correctly integrated; its firmware was designed to receive future updates that improved and expanded its capacity and compatibility with other devices. Conclusions: The final product, which works with the Iridium network, seeks to satisfy the technological requirements of the freight transport sector in Colombia with a low-cost, versatile, and easily integrated solution. The implementation of this type of technologies expands the capacity of tracking mobile assets, even in places where there is no cellular network coverage.
dc.description.abstractContexto: Este articulo presenta el diseño y desarrollo de un dispositivo electrónico, que funciona como canal de respaldo satelital para equipos de localización vehicular automática (AVL), cuyo único canal de comunicación es la red celular. Método: El diseño, fabricación y ensamblaje del hardware siguió cuatro fases y estuvo alineado con el estándar IPC 2221. Esto permitió mejorar la experiencia del diseño y garantizó el correcto funcionamiento eléctrico en el producto final. Resultados: La información enviada por el dispositivo desarrollado corresponde a los datos generados por el dispositivo AVL, lo que indica que el procesamiento de la información fue diseñado correctamente. Además, fue posible obtener un dispositivo funcional y versátil cuyos bloques se integraron correctamente; su firmware fue diseñado para recibir futuras actualizaciones que mejoraran y ampliaran su capacidad y compatibilidad con otros dispositivos. Conclusiones: El producto final, que opera con la red Iridium, busca satisfacer las necesidades tecnológicas del sector de transporte de carga en Colombia con una solución versátil, de bajo costo y de fácil integración. Con el uso de este tipo de tecnologías, se amplía la capacidad de rastrear activos móviles, aun en zonas donde no existe cobertura de redes celulares.
dc.languagespa
dc.publisherBogotá
dc.relationvol. 25, no. 3, pp 437-451
dc.relation451
dc.relation3
dc.relation437
dc.relation25
dc.relationN/A
dc.relationRevista De Ingeniería
dc.relationMinisterio de Transporte. Concepto de operaciones - dispositivo AVL, 2016. [Online]. Available: https:// www.mintransporte.gov.co/descargar.php?idFile=14648 ↑439
dc.relationWang, L. Lei, and Z. Mingtian, “Topological dynamics characterization for LEO satellite networks”, Comp. Net., vol. 51, no. 1, pp. 43-53, 2017. https://doi.org/10.1016/j.comnet.2006.04.010 ↑440
dc.relationT. Henderson and R. Katz, “Network simulation for LEO satellite networks”, presented at 18th AIAA Int. Comm. Sat. Sys. Conf. (ICSSC), Reston, VA, USA, 2000, pp. 10-14. https://doi.org/10.2514/6.2000-1237 ↑440
dc.relationT. Henderson, “LEO Satellite Networks”, in Wiley Encyclopedia of Telecommunications, J.G. Proakis, Ed., Hoboken, NJ, USA. Wiley & Sons Inc., 2003. https://doi.org/10.1002/0471219282.eot187 ↑440
dc.relationIridium, The Global Network: Ground Infrastructure. Iridium’s extensive, interconnected ground network provides multiple layers of redundancy and back-up systems for all critical functions to ensure high network reliability. Iridium Communications Inc.; 2012. [Online]. Available: https://apollosat.com/intel/ iridium-networks-ground-infrastructure/ ↑440
dc.relationIridium, The Global Network: Satellite Constellation. Iridium’s cross-linked LEO constellation architecture provides multiple layers of resiliency and redundancy to provide industry-leading network reliability, Iridium Communications Inc, 2012. [Online]. Available: https://apollosat.com/intel/ iridium-networks-groundinfrastructure/ ↑441
dc.relationIridium Communications Inc., “Iridium 9603(N) SBD Transceiver, Developer’s Guide”, Rev 2.1., Iridium Communications Inc., McLean, VA, USA, 2012. ↑441
dc.relationIridium Communications Inc., “Iridium 9603N and 9602N SBD Transceiver Antenna Connections”, Iridium Communications Inc., McLean, VA, USA, 2012. ↑
dc.relationIridium Communications Inc., “Iridium Short Burst Data Service, Developer’s Guide. Release 3.0.”, Iridium Communications Inc., McLean, VA, USA, 2012. ↑
dc.relationICAO “Technical Manual for Iridium Aeronautical Mobile Satellite (Route) Service”, Draft v1.1, ICAO, Montreal, Canada, 2006. ↑445
dc.relationGeneric Standard on Printed Board Design, IPC -2221. Bonn, Germany, 1998. ↑445
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://revistas.udistrital.edu.co/index.php/reving/article/view/17076/16136
dc.titleElectronic Device for Satellite Backup of Automatic Vehicle Location Equipment Using the Iridium Network
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución