dc.contributorGrupo de Investigación Estructuras y Materiales - Gimeci
dc.creatorClavijo Ramírez, Jorge Enrique
dc.creatorWang, H
dc.creatorSanchez, S
dc.date.accessioned2023-06-09T19:22:30Z
dc.date.accessioned2023-09-06T21:16:24Z
dc.date.available2023-06-09T19:22:30Z
dc.date.available2023-09-06T21:16:24Z
dc.date.created2023-06-09T19:22:30Z
dc.date.issued2019
dc.identifier1742-6588
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2404
dc.identifierhttps://doi:10.1088/1742-6596/1386/1/012107
dc.identifier1742-6596
dc.identifierhttps://iopscience.iop.org/article/10.1088/1742-6596/1386/1/012107
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707141
dc.description.abstractElectromagnetic radiation (known as electromagnetic emissions) related to processes of loading and fracture in different types of materials (from metals to rocks) has been widely reported. The physical mechanisms behind these emissions are still under discussion, however, it is commonly accepted that they are created by some of the micro-cracks that appear in the sample during fracture processes. Nucleation and growing of micro-cracks generate mechanical waves (acoustic emissions), therefore, each electromagnetic emission should be linked with some acoustic event. Furthermore, it is expected that the electromagnetic and acoustic activities (number of emissions per second) have the same general characteristics. Contrary to what is usually reported, we find that there are significant differences between acoustic and electromagnetic emissions in loading processes on rocks. These differences were detected during the compression of a typical laboratory-scale sample of granite when it is compressed at a rate of around 20 kPa/s. We found two important discrepancies: i) There were at least 20 electromagnetic bursts (out of around 200) that were not coincident with any acoustic event. ii) The electromagnetic activity in general shows its maximum value when acoustic activity is very low. Both emissions just coincide at the moment of the final collapse. These results strongly suggest the existence of a non-fracture mechanism related to the origin of electromagnetic emissions. This could have important consequences for the field of non-destructive assessment of materials and even in the study of earthquake precursors and forecasting.
dc.description.abstractLa radiación electromagnética (conocida como emisiones electromagnéticas) relacionada con los procesos de carga y fractura en diferentes tipos de materiales (desde metales hasta rocas) ha sido ampliamente reportada. Los mecanismos físicos que subyacen a estas emisiones siguen siendo objeto de debate, pero se acepta comúnmente que son creadas por algunas de las microgrietas que aparecen en la muestra durante los procesos de fractura. La nucleación y el crecimiento de las microfisuras generan ondas mecánicas (emisiones acústicas), por lo que cada emisión electromagnética debería estar relacionada con algún evento acústico. Además, se espera que las actividades electromagnéticas y acústicas (número de emisiones por segundo) tengan las mismas características generales. Contrariamente a lo que se suele informar, encontramos que existen diferencias significativas entre las emisiones acústicas y electromagnéticas en los procesos de carga de rocas. Estas diferencias se detectaron durante la compresión de una muestra típica de granito a escala de laboratorio cuando se comprime a una velocidad de unos 20 kPa/s. Encontramos dos discrepancias importantes: i) Hubo al menos 20 explosiones electromagnéticas (de unas 200) que no coincidieron con ningún evento acústico. ii) La actividad electromagnética en general muestra su valor máximo cuando la actividad acústica es muy baja. Ambas emisiones coinciden justo en el momento del colapso final. Estos resultados sugieren fuertemente la existencia de un mecanismo de no-fractura relacionado con el origen de las emisiones electromagnéticas. Esto podría tener importantes consecuencias en el campo de la evaluación no destructiva de materiales e incluso en el estudio de precursores y predicción de terremotos.
dc.languageeng
dc.publisherIOP Publishing Ltd
dc.publisherReino Unido
dc.relation6
dc.relation1
dc.relation1386
dc.relationN/A
dc.relationJournal of Physics: Conference Series
dc.relationAggelis D G 2011 Classification of cracking mode in concrete by acoustic emission parameters Mech. Res. Commun. 38(3) 153
dc.relationOhno K and Ohtsu M 2010 Crack classification in concrete based on acoustic emission Constr. Build. Mater 24(12) 2339.
dc.relationPanesso A, Sambon´ı C, Romero P, Castellanos S, Marulanda J, Thomson P 2019 Caracterizaci´on experimental de da˜no en vigas de concreto sometidas a carga c´ıclica usando emisi´on ac´ustica Congreso Nacional de Ingenier´ıa S´ısmica (Cali: Universidad del Valle) p 671.
dc.relationFarhidzadeh A, Salamone S and Singla P 2013 A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures J. Intell. Material Syst. Struct. 24(14) 1722.
dc.relationFrid V and Vozoff K 2005 Electromagnetic radiation induced by mining rock failure Int. J. Coal. Geol. 64(1) 57.
dc.relationContoyiannis Y, Potirakis S M, Eftaxias K, and Contoyianni L 2015 Tricritical crossover in earthquake preparation by analyzing preseismic electromagnetic emissions J. Geodyn. 84 40
dc.relationTzanis A, and Vallianatos F 2002 A physical model of electrical earthquake precursors due to crack propagation and the motion of charged edge dislocations Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling ed M Hayakawa and O A Molchanov (Tokyo: Terrapub) p 117
dc.relationGernets A A, Makarets M V, Koshevaya S V, Grimalsky V V, Romero D J and Kotsarenko A N 2004 Electromagnetic emission caused by the fracturing of piezoelectric crystals with an arbitrarily oriented moving crack Physics and Chemistry of the Earth 29(4-9) 463.
dc.relationGershenzon N, Zilpimiani D, and Maguladze P 1985 Electromagnetic radiation from crack tip during ionic crystals fracture Dokl. Akad. Nauk SSSR 248 1077
dc.relationRabinovitch A, Frid V, and Bahat D 2007 Surface oscillations: A possible source of fracture induced electromagnetic radiation Tectonophysics 431(1-4) 15.
dc.relationBar´o J, Corral A, Illa X, Planes A, Salje E K, Schranz W, Soto-Parra E and Vives E 2013 Statistical similarity between the compression of a porous material and earthquakes Phys. Rev. Lett. 110(8) 088702
dc.relationSoto-Parra D, Zhang X, Cao S, Vives E, Salje E K, and Planes A 2015 Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study Phys. Rev. E 91(6) 060401
dc.relationDahmen K A, Ben-Zion Y, and Uhl J T 2009 Micromechanical model for deformation in solids with universal predictions for stress—strain curves and slip avalanches Phys. Rev. Lett. 102(17) 175501
dc.relationLay T and Wallace T C 1995 Modern Global Seismology vol 58 (San Diego, CA: Academic Press) p 390
dc.relationHulbert C, Rouet-Leduc B, Johnson P A, Ren C X, Rivi`ere J, Bolton D C, and Marone C 2019 Similarity of fast and slow earthquakes illuminated by machine learning Nat. Geosci. 12(1) 69
dc.relationRouet-Leduc B, Hulbert C and Johnson P A 2019 Continuous chatter of the Cascadia subduction zone revealed by machine learning Nat. Geosci. 12(1) 75
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/1386/1/012107
dc.titleObservation of significant differences between electromagnetic and acoustic emissions during fracture processes: A study on rocks under compression loading
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución