dc.contributor | Grupo de Investigación en Geotecnia | |
dc.creator | Prieto Salazar, Jorge Alonso | |
dc.creator | Foschi, Ricardo O. | |
dc.creator | Ventura, Carlos E. | |
dc.creator | Finn, W. D. Liam | |
dc.creator | Ramo, Alfonso M. | |
dc.creator | Prada Sarmiento, L. F. | |
dc.date.accessioned | 2023-06-20T16:41:01Z | |
dc.date.accessioned | 2023-09-06T21:16:22Z | |
dc.date.available | 2023-06-20T16:41:01Z | |
dc.date.available | 2023-09-06T21:16:22Z | |
dc.date.created | 2023-06-20T16:41:01Z | |
dc.date.issued | 2012 | |
dc.identifier | 1535-0088 | |
dc.identifier | https://repositorio.escuelaing.edu.co/handle/001/2435 | |
dc.identifier | https://www.scipedia.com/public/Prieto_et_al_2011b | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8707133 | |
dc.description.abstract | Este artículo utiliza una base de datos de mapas de isosistas (artículo acompañante) para desarrollar dos aproximaciones. Primero, se generan ecuaciones de atenuación tradicionales de intensidad que relaciona variables continuas y discretas, y segunda se presenta un método alternativo de tratamiento del problema que desarrolla funciones probabilísticas conjuntas mixtas discretas-continuas que permite estimar directamente las probabilidades de ocurrencia o excedencia de diferencia de intensidades dada la distancia a un sitio y la intensidad epicentral. La distribución condicional de la distancia dado un nivel de
intensidad o diferencia de intensidad es continua y se representa por una distribución lognormal. La distribución de intensidades es discreta y se representa por una función de Poisson bimodal. La representación bimodal se puede deber a reflexiones de onda en la frontera entre la litósfera y la astenósfera. Ambas aproximaciones se aplican para sismos de subducción y eventos superficiales ocurridos en Colombia y el Occidente de Venezuela | |
dc.description.abstract | This paper uses an intensity database (parallel paper) to generate first traditional attenuation equations, and second, a model for the conditional excedeence probability of a level of seismic intensity, given distance to a site and the epicentral intensity. The latter model is comprised of mixed discrete-continuous joint probability distributions. The conditional distribution of distance
for a given intensity or intensity difference is continuous and is represented by a lognormal distribution. The distribution of intensities is discrete and is represented by bi-modal Poisson functions. The bi-modal representation may be due to wave reflections at the boundary between the lithosphere and the asthenosphere, in the region. Two models are proposed, one for subduction earthquakes and the other for shallow earthquakes. The models are applied to Colombia and Western Venezuela. | |
dc.language | spa | |
dc.publisher | Scipedia S.L. | |
dc.publisher | Puerto Rico | |
dc.relation | 196 | |
dc.relation | 2 | |
dc.relation | 183 | |
dc.relation | 11 | |
dc.relation | N/A | |
dc.relation | Attenuation and probability distribution of seismic intensities for Colombia and western Venezuela | |
dc.relation | Ambraseys, N.N. (1985). “Intensity-Attenuation and magnitude-intensity relationships for Northwest European earthquakes”, Earthquake Engineering and Structural Dynamics, Vol. 13, pp. 733-778. | |
dc.relation | Ambraseys, N. N., y Douglas J. (2004). “Magnitude calibration of north Indian earthquakes”, Geophysics Journal International, Vol. 159, pp. 165-206. | |
dc.relation | ATC- Applied Technology Council (1985). Earthquake Damage Evaluation Data for California, ATC-13, Redwood City, California. | |
dc.relation | Bakun, W. H., Haugerud, R. A., Hopper, M. G. y Ludwin R. S. (2002). “The December 1872 Washington State earthquake”, Bulletin of the Seismological Society of America, Vol. 92, pp. 3239-3258. | |
dc.relation | Bakun, W. H., Johnston, A. C. y Hopper M. G. (2003). “Estimating locations and magnitudes of earthquakes in Eastern North America from Modified Mercalli Intensities”, Bulletin of the Seismological Society of America, Vol. 93, pp. 190-202. | |
dc.relation | Catchings, R. D. y Kohler W. M. (1996). “Reflected seismic waves and their effect on strong shaking during the 1989 Loma Prieta, California, earthquake”, Bulletin of the Seismological Society of America, Vol. 86, pp. 1401-1416. | |
dc.relation | Gasperini, P. (2001). “The attenuation of seismic intensity in Italy: a bilinear shape indicates the dominance of deep phases at epicentral distances longer than 45 km”, Bulletin of the Seismological Society of America, Vol. 91, pp. 826-841. | |
dc.relation | Gupta, I., O. y Nuttli, O. (1976). “Spatial attenuation of intensities for central US earthquakes”, Bulletin of the Seismological Society of America, Vol. 66, No. 3, pp. 743-751. | |
dc.relation | IBC (2006). International Building Code, version 2006. | |
dc.relation | Liu, K.–S. y Tsai Y.-B. (2009). “Large effects of Moho reflections (SmS) on peak ground motions in Northwestern Taiwan”, Bulletin of the Seismological Society of America, Vol. 99, pp. 255-267. | |
dc.relation | McGuire, R. (2004). Seismic Hazard and Risk Analysis, Earthquake Engineering Research Institute, Monograph 10, pp. 221, Oakland, California. | |
dc.relation | Mori, J. y Helmberger D. (1996). “Large amplitude Moho reflections (SmS) from Landers aftershocks, Southern California”, Bulletin of the Seismological Society of America, Vol. 86, pp. 1845-1852. | |
dc.relation | Pasolini, C., Gasperini, P., Albarello, D., Lolli, B, y D’Amico, V. (2008 a). “The attenuation of seismic intensity in Italy, Part I: theoretical and empirical backgrounds”, Bulletin of the Seismological Society of America, Vol. 98, No. 2, pp. 682-691. | |
dc.relation | Pasolini, C., Albarello, D. Gasperini, P., D'Amico, V. y Lolli, B. (2008 b). “The attenuation of seismic intensity in Italy, Part II: modeling and validation”, Bulletin of the Seismological Society of America, Vol. 98, No. 2, pp. 692- 708. | |
dc.relation | Prieto, J., Ventura, C., Finn, W.D., Ramos, A. y Prada, F. (2012). “Base de datos de intensidad sísmica para Colombia y el Occidente de Venezuela”, Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, Vol. 12, No. 2, pp. 163-182. | |
dc.relation | Saragoni, R., Astroza M., y Ruiz S. (2004). “Comparative study of subduction earthquake ground motion of North, Central and South America”, 13th World Conference on Earthquake Engineering, Paper no.104, Vancouver, Canada. | |
dc.relation | Steinbrugge, K. V. (1982). Earthquakes, Volcanoes and Tsunamis: Anatomy of Hazard, Skandia America Group, New York. | |
dc.relation | Villacis, C., Yamada T., y Kaneko F. (1994). “Attenuation relations for Ecuador”, Appendix II, en The Quito, Ecuador, Earthquake Risk Management Project, Escuela Politécnica Nacional, Geohazards International, Orstom-Quito and Oyo Corporation, Quito, Ecuador, pp. 162-181. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.source | https://www.scipedia.com/public/Prieto_et_al_2011b | |
dc.title | Atenuación y distribución de probabilidad de intensidades sísmicas para Colombia y el Occidente de Venezuela | |
dc.type | Artículo de revista | |