dc.contributorGrupo de Investigación Ecitrónica
dc.creatorPaz Penagos, Hernán
dc.creatorAcero Briceño, Ximena
dc.creatorFerro Escobar, Roberto
dc.date.accessioned2023-06-26T17:57:48Z
dc.date.accessioned2023-09-06T21:16:17Z
dc.date.available2023-06-26T17:57:48Z
dc.date.available2023-09-06T21:16:17Z
dc.date.created2023-06-26T17:57:48Z
dc.date.issued2007
dc.identifier0121-5132
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2466
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707119
dc.description.abstractObedeciendo a la necesidad de construir antenas con amplios anchos de banda y dimensiones más pequeñas que las antenas típicas, se ha implementado la geometría fractal como recurso para cumplir con estos requerimientos. El trabajo de investigación presentado aquí está principalmente enfocado a analizar los rasgos geométricos de una antena fractal construida con el modelo de Mandelbrot, con el fin de verificar las características y el desempeño de la misma. Se construyeron varias antenas con este modelo, cada una con un número de iteración diferente; se observaron sus características en cuanto a resistencia de pérdida, inductancia, capacitancia, eficiencia, resistencia de radiación, factor de calidad y ancho de banda, con el propósito de averiguar la influencia de la geometría fractal en el comportamiento de la antena.
dc.description.abstractObeying the necessity to make antennas with wide bandwidth and dimensions smaller than the typical antennas, fractal geometry has been implemented like resource to fullfit these requirements. Investigation displayed here is focused to analyze the geometric characteristics of an antenna fractal built under Mandelbrot's model, with the purpose of verifying the characteristics and performance of the same one. Several antennas under this model, each one with a number of different iteration were built, were observed their characteristics as far as resistance of losses, inductance, capacitance, efficiency, radiation resistance, factor of quality and bandwidth, in order to investigate the influence of geometry fractal in the behavior of the antenna.
dc.languagespa
dc.publisherUniversidad Escuela Colombiana de Ingeniería Julio Garavito
dc.publisherColombia
dc.relation44
dc.relation66
dc.relation35
dc.relation17
dc.relationN/A
dc.relationRevista de la Escuela Colombiana de Ingeniería
dc.relationMandelbrot, B.B. (1983). The fractal geometry of nature. Nueva York: W.H. Freeman.
dc.relationFalconer, K.J. (1990). Fractal Geometry: mathematical foundations and applications. Nueva York: Wiley.
dc.relationPeitgen, H.O.; Henriques, J.M. &Penedo, L.F. (eds.).(1991).Fractals in the fundamental and applied science. Amsterdam: North Holland.
dc.relationCherepano, G.P.; Balankin, A.S. & Ivanova, V.S. (1995). Fractal fracture mechanics. Engineering Fracture Mechanics, vol. 51, pp. 997-1033.
dc.relationJeng, J.H.; Varandan, V.V. & Varadan, V.K. (1987). Fractal finite element mesh generation for vibration problems, J. Acous. Amer., vol. 82, pp. 1829-1833.
dc.relationLakhtakia, A.; Holter, N.S.; Varadan, V.K. and Varadan, V.V. Self-similarity in diffraction by a self-similar fractal screen. IEEE Trans. Ant. Propagat, vol. 35, pp. 236-239.
dc.relationJaggard, D.L. (1995). Fractal electrodynamics: Wave interaction with discretely self-similar structures en Electromagnetic Symmetry. Taylor, pp. 231-280.
dc.relationJaggard, D.L. (1990). On fractal electrodymanics en Recent Advances in Electromagnetic Theory. Springer Verlag, pp. 183-224.
dc.relationPeitgen, H.O.; Jurgens, H. & Saupe, D. (1992). Chaos and fractals: new frontiers of science. Nueva York: Springer Verlag.
dc.relationWerner, D.H.; Werner, P.L. & Church, K.H. (2001). Genetically engineered multiband fractal antennas. Electron. Lett., vol. 37, pp. 1150-1151.
dc.relationWerner, D.H.; Werner, P.L. & Church, K.H.; Culver, J.W. & Eason, S.D. (2001). Genetically engineered dual-band fractal antennas. IEEE AP-S Inter. Symp. 2001, vol. 3, pp. 628-631.
dc.relationJacquin. A.E. (1993). Fractal image coding: A review. Proc. IEEE, vol. 81, pp. 1451-1465.
dc.relationWohlberg, B. & DeJager, G. (1999). Review of the fractal image coding literature. IEEE Trans. Image Processing, vol. 8, pp. 1716-1729.
dc.relationBarnsley, M.F. & Hurd, L.P. (1993). Fractal image compression. Wellesly MA: A.K. Peters.
dc.relationCollin, R.E. & Zucker, F.J. (1969). Antenna Theory Pt. 1. New York: McGraw-Hill.
dc.relationWheeler, H.A. (1975). Small Antennas. IEEE Trans. Ant. Propagat, vol. AP-23, pp. 462-469.
dc.relationJaggard, D.L. (1997). Fractal electrodymanics: from super antennas to superlattices. Fractals in Engineering, Springer, pp. 204-221.
dc.relationWerner, D.H.; Haupt, R.L. & Werner, P.L. (1999). Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Ant. Propagat. Mag., vol. 41, n° 5, pp. 37-59.
dc.relationWalker, G.J. & James, J.R. (1998). FRactal volume antennas. Electron. Lett. , vol. 34, pp. 1536-1537.
dc.relationWerner, D.H.; Werner, P.L.; Jaggard, D.L.; Jaggard, A.D.; Puente, C. & Haupt, R.L. (1998). The theory and design of fractal antenna arrays. Frontiers in Electromagnetics, D.H. Werner and R. Mittra (eds.), pp. 94-203.
dc.relationBaliarda, C.P.; Romeu, J. & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE. Trans. Ant. Propagat., vol. 48, pp. 1773-1781.
dc.relationWerner, D.H.; Rubio Bretones, A. & Long, B.R. (1999). Radication characteristics of thin-wire ternary fractal trees. Electron. Lett., vol. 35, pp. 609-610.
dc.relationPuente, C.; Romeu, J.; Bartolome, R. & Pous, R. (1996). Pertubation of the Sierpinski antenna to allocate operating bands. Electron. Lett., vol. 32, pp. 2186-2187.
dc.relationKraus, John D. (1988). Antennas, 2nd ed. McGraw Hill.
dc.relationBalanis, C.A. (1982). Antenna Theory, analysis and design, Harper & Row, Publishers.
dc.relationVinoy, K.J. (2002). Fractal shaped antenna elements for Wide-and Multi-band wireless applications. The Pennylvania State University The GRaduate School College of Engineering. August.
dc.relationGonzález, J.M. & Romeu, J. (2002). Task 1.1 Final Report, FRactalcoms Project (IST 2001-33055). Deliverable D1, Dec. 17th.
dc.relationJasik, H. (ed.). (1961). Antenna Engineering Handbook, Nueva York: McGraw-Hill.
dc.relationHarrington, R.F. (1968). Field Computations by Moment Methods, Nueva York: McMillan.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.titleDiseño de una antena fractal siguiendo el modelo de Mandelbrot
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución