dc.contributorGrupo de Investigación Ecitrónica
dc.creatorPérez Ruiz, Alexander
dc.creatorRosell, Jan
dc.creatorVázquez, Carlos
dc.creatorIñiguez, Pedro
dc.date.accessioned2023-05-24T17:47:53Z
dc.date.accessioned2023-09-06T21:16:00Z
dc.date.available2023-05-24T17:47:53Z
dc.date.available2023-09-06T21:16:00Z
dc.date.created2023-05-24T17:47:53Z
dc.date.issued2008
dc.identifier0921-0296
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2361
dc.identifierhttps://doi.org/10.1007/s10846-008-9239-0
dc.identifier1573-0409
dc.identifierhttps://link.springer.com/article/10.1007/s10846-008-9239-0
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707069
dc.description.abstractHaptic devices allow a user to feel either reaction forces from virtual interactions, or reaction forces reflected from a remote site during a bilateral teleoperation task. Also, guiding forces can be exerted to train the user in the performance of a virtual task, or to assist him to safely teleoperate a robot. The generation of guiding forces rely on the existence of a motion plan that provides the direction to be followed to reach the goal from any free configuration of the configuration space (C-space). This paper proposes a method to obtain such a plan that interleaves a sampling-based exploration of C-space with an efficient computation of harmonic functions. A deterministic sampling sequence (with a bias based on harmonic function values) is used to obtain a hierarchical cell decomposition model of C-space. An harmonic function is iteratively computed over the partially known model using a novel approach. The harmonic function is the navigation function used as motion plan. The approach has been implemented in a planner (called Kautham planner) that, given an initial and a goal configuration, it provides: a) a channel of cells connecting the cell that contains the initial configuration with the cell that contains the goal configuration; b) two harmonic functions over the whole C-space: one that guides motions towards the channel and the other that guides motions within the channel towards the goal; c) a path computed over a roadmap built with the free samples of the channel. The harmonic functions and the solution path are then used to generate the guiding forces for the haptic device. The planning approach is illustrated with examples on 2D and 3D workspaces.
dc.description.abstractLos dispositivos hápticos permiten al usuario sentir fuerzas de reacción procedentes de interacciones virtuales o fuerzas de reacción reflejadas desde un lugar remoto durante una tarea de teleoperación bilateral. Además, pueden ejercerse fuerzas de guiado para entrenar al usuario en la realización de una tarea virtual, o para ayudarle a teleoperar con seguridad un robot. La generación de fuerzas de guiado depende de la existencia de un plan de movimiento que proporcione la dirección a seguir para alcanzar el objetivo desde cualquier configuración libre del espacio de configuración (espacio C). Este trabajo propone un método para obtener dicho plan que intercala una exploración del espacio C basada en muestreos con un cálculo eficiente de funciones armónicas. Se utiliza una secuencia de muestreo determinista (con un sesgo basado en los valores de la función armónica) para obtener un modelo de descomposición jerárquica de celdas del espacio C. Se itera una función armónica. Se calcula iterativamente una función armónica sobre el modelo parcialmente conocido utilizando un enfoque novedoso. La función armónica es la función de navegación utilizada como plan de movimiento. El enfoque se ha implementado en un planificador (denominado planificador Kautham) que, dadas una configuración inicial y una configuración objetivo, proporciona: a) un canal de celdas que conecta la celda que contiene la configuración inicial con la celda que contiene la configuración objetivo; b) dos funciones armónicas sobre todo el espacio C: una que guía los movimientos hacia el canal y otra que guía los movimientos dentro del canal hacia el objetivo; c) una trayectoria calculada sobre una hoja de ruta construida con las muestras libres del canal. A continuación, las funciones armónicas y la trayectoria de solución se utilizan para generar las fuerzas de guiado del dispositivo háptico. El método de planificación se ilustra con ejemplos en espacios de trabajo 2D y 3D.
dc.languageeng
dc.publisherSpringer Link
dc.publisherPaíses Bajos
dc.relation245
dc.relation223
dc.relation53
dc.relationN/A
dc.relationJournal Of Intelligent & Robotic Systems
dc.relationC Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Doganay. Haptic guidance for improved task performance in steering microparticles with optical tweezers. Optics Express, 15(18):11616–11621, 2007.
dc.relationR. Bohlin and L. Kavraki. Path planning using lazy PRM. In Proc. of the IEEE Int. Conf. on Robotics and Automation, volume 1, pages 521–528, 2000.
dc.relationV. Boor, M. H. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1018–1023, 1999.
dc.relationBrendan Burns and Oliver Brock. Toward optimal configuration space sampling. In Proceedings of Robotics: Science and Systems, Cambridge, USA, June 2005.
dc.relationH. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles of Robot Motion, chapter Cell decompositions, pages 161 – 196. The MIT Press, 2005.
dc.relationL. K. Dale and N. M. Amato. Probabilistic roadmaps - putting it all together. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1940–1947, 2002.
dc.relationI. Elhajj, N. Xi, W. K. Fung, Y. H. Liu, W.J. Li, T. Kaga, and T. Fukuda. Haptic information in internet-based teleoperation. IEEE/ASME Transactions on Mechatronics, 6(3):295 – 304, 2001.
dc.relationD. Feygin, M. Keehner, and F. Tendick. Haptic guidance: Experimental evaluation of a haptic training method for a perceptual motor skill. In HAPTICS’02: Proc. of the 10th Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 40–47, 2002.
dc.relationI. Font, S. Weiland, M. Franken, M. Steinbuch, and L. Rovers. Haptic feedback designs in teleoperation systems for minimal invasive surgery. In IEEE Int. Conf. on Systems, Man and Cybernetics, volume 3, pages 2513 – 2518, 2004.
dc.relationD. Galeano and S. Payandeh. Artificial and natural force constraints in haptic-aided path planning. In IEEE Int. Workshop on Haptic Audio Visual Environments and their Applications, 2005.
dc.relationR. Geraerts and M. H. Overmars. Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54(2):165–173, 2006.
dc.relationS. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical structure for rapid interference detection. Computer Graphics, 30(Annual Conference Series):171–180, 1996.
dc.relationL. A. Hageman and D. M. Young. Applied Iterative Methods. Academic Press, 1981.
dc.relationJ. Halton. On the effciency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math., 2:84–90, 1960.
dc.relationD. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 4420–4426, 2003.
dc.relationD. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic roadmap planning. Int. Journal of Robotics Research, 25(7):627 – 643, 2006.
dc.relationD. Hsu, G. Sanchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 3874 – 3880, 2005.
dc.relationL. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic roadmaps for path planning. IEEE Trans. on Robotics and Automation, 14(1):166 –171, Feb. 1998.
dc.relationL. E. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE Int. Conf. on Robotics and Automation, volume 3, pages 2138–2145, 1994.
dc.relationL. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars. Probabilistic roadmaps for path planning in high - dimensional configuration spaces. IEEE Trans. on Robotics and Automation, 12(4):566–580, August 1996.
dc.relationM. Kazemi, M. Mehrandezh, and K. Gupta. An incremental harmonic function-based probabilistic roadmap approach to robot path planning. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 2136 – 2141, 2005.
dc.relationO. Khatib. Real-time obstacle aboidance for manipulators and mobile robots. Int. Journal of Robotics Research, 5(1):90 – 98, 1986.
dc.relationJ. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 995–1001, 2000.
dc.relationH. Kurniawati and D. Hsu. Workspace-based connectivity oracle: An adaptive sampling strategy for PRM planning. In S. Akella and et.al., editors, Algorithmic Foundations of Robotics VII. Springer–Verlag, 2006.
dc.relationJ. C. Latombe. Robot Motion Planning, chapter Potential Field Methods, pages 296 – 355. Kluwer Academic Publishers, 1991.
dc.relationJ.-C. Latombe. Robot Motion Planning, chapter Approximate cell decomposition, pages 248 – 294. Kluwer Academic Publishers, 1991.
dc.relationS. M. LaValle. Planning Algorithms, chapter Feedback Motion Planning, pages 367 – 430. Cambridge University Press, 2006.
dc.relationS. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between classical grid search and probabilistic roadmaps. Int. Journal of Robotics Research, 23(7-8):673–692, 2004.
dc.relationP. Leven and S. Hutchinson. Using manipulability to bias sampling during the construction of probabilistic roadmaps. IEEE Trans. on Robotics and Automation, 19(6):1020–1026, 2003.
dc.relationS. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods for motion planning. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 2920–2927, 2003.
dc.relationS. R. Lindemann and S. M. LaValle. Proc. 8th Int. Symp. on Robotics Research, chapter Current issues in sampling-based motion planning. SpringerVerlag, 2004.
dc.relationS. R. Lindemann, A. Yershova, and S. M. LaValle. Incremental grid sampling strategies in robotics. In Proc. of the Sixth Int. Workshop on the Algorithmic Foundations of Robotics, pages 297 – 312, 2004.
dc.relationF. Lingelbach. Path planning using probabilistic cell decomposition. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 467–472, 2004.
dc.relationM.A. Otaduy and M. C. Lin. A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Transactions on Robotics, 22(4):751 – 762, 2006.
dc.relationE. Prestes, P. M. Engel, M. Trevisan, and M. A. P. Idiart. Exploration method using harmonic functions. Robotics and Autonomous Systems, 40:25–42, 2002.
dc.relationJ. Rosell and P. Iniguez. Path planning using harmonic functions and probabilistic cell decomposition. In ˜ Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1815–1820, 2005.
dc.relationJ. Rosell, M. Roa, A. Perez, and F. Garc ´ ´ıa. A general deterministic sequence for sampling d-dimensional configuration spaces. J. of Intelligent and Robotic Systems, 50(4):361–374, 2007.
dc.relationJ. Rosell, M. Roa, A. Perez, and F. Garc ´ ´ıa. A general deterministic sequence for sampling d-dimensional configuration spaces. J. of Intelligent and Robotic Systems, 50(4):361–374, 2007.
dc.relationD. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of complex graphical environments. In Proc. of the 24th annual Conf. on Computer graphics and Interactive Techniques, pages 345–352, 1997.
dc.relationK. Souccar, J. Coelho, C. Connolly, and R. Grupen. Practical Motion Planning in Robotics, chapter Harmonic Functions for Path Planning and Control, pages 277–301. John Wiley & Sons Ltd, 1998.
dc.relationM. A. Srinivasan and C. Basdogan. Haptics in virtual environments: Taxonomy, research status, and challenges. Computer and Graphics, 21(4):393–404, 1997.
dc.relationA. Varol, I. Gunev, and C. Basdogan. A virtual reality toolkit for path planning and manipulation at nano-scale. In 14th Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 485 – 489, 2006.
dc.relationC. Vazquez and J. Rosell. Haptic guidance based on harmonic functions for the execution of teleoperated assembly tasks. In ´ Preprints of the 2007 IFAC Workshop on Intelligent Assembly and Disassembly, pages 88–93, 2007.
dc.relationS. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1024–1031, 1999.
dc.relationL. Yang and S. M. LaValle. The sampling-based neighborhood graph: An approach to computing and executing feedback motion strategies. IEEE Trans. on Robotics and Automation, 20(3):419– 432, 2004.
dc.relationL. Zhang, Y. J. Kim, and D. Manocha. A hybrid approach for complete motion planning. In Accepted to IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007.
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcehttps://link.springer.com/article/10.1007/s10846-008-9239-0
dc.titleMotion planning for haptic guidance
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución