dc.contributorLoango Chamorro, Nelsy
dc.contributorGecavyme
dc.creatorValencia Marín, Johny Alexander
dc.date.accessioned2023-08-02T19:20:33Z
dc.date.accessioned2023-09-06T20:21:51Z
dc.date.available2023-08-02T19:20:33Z
dc.date.available2023-09-06T20:21:51Z
dc.date.created2023-08-02T19:20:33Z
dc.date.issued2009-01
dc.identifierhttps://bdigital.uniquindio.edu.co/handle/001/6420
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8705696
dc.description.abstractEl suelo presenta una dinámica tal que podríamos afirmar que es el ecosistema más estable y sustentable para el grupo microbiano, los aportes de materia orgánica e inorgánica mantienen una inmensa cantidad de microorganismos los cuales apenas estamos comenzando a descubrir. Las bacterias son los organismos más numerosos en el suelo (entre 106 y 107 bacterias) por gramo de suelo, mientras que los hongos dado su mayor tamaño, aunque menor abundancia tiene la biomasa más significativa. Por tal razón se hace necesaria la implementación de técnicas moleculares como la PCR para la caracterización de microorganismos de suelo.
dc.description.abstractThe soil presents a dynamic that we could affirm is the most stable and sustainable ecosystem for the microbial group, the contributions of organic and inorganic matter maintain an immense quantity of microorganisms which we are hardly beginning to discover. The bacterias are the most numerous organisms in the soil (between 106 and 107 bacterias) for a gram of soil, while the mushrooms have a biggest size but smaller abundance they have the most significant biomass. For such a reason, it becomes necessary the implementation of technical molecular as the PCR for the characterization of soli microorganisms.
dc.languagespa
dc.publisherUniversidad del Quindío
dc.publisherFacultad de Ciencias Básicas y Tecnologías
dc.publisherArmenia Quindío
dc.publisherCiencias Básicas y Tecnologías - Biología
dc.relationAlexander, M. 1980. Introducción a la microbiología del suelo, Ed. AGT. México D.F.
dc.relationAllison, F. 1968. Soil aggregation some facts and fallacies as seen by a microbiologist. Soil Science
dc.relationAtlas, R.M. 1984. Diversity of microbiological communities. Advances in Microbial Ecology. Plenum Press. New York. USA
dc.relation• Barrera-Saldaña, H., Ortiz-López, R., Rojas-Martínez, A. y Reséndez-Pérez, D. 1993. Reacción en cadena de la polimerasa: Una nueva época dorada en la biología molecular. Ciencia y Desarrollo, (Conacyt
dc.relation• Cariello NF, Swenberg JA, Skopek TR. Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis. 1991. Nucleic Acids Res
dc.relation• Daniel, R. 2004. The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotech.
dc.relation• Edwards, U., Rogall, T., Blocker, H., Emde, M. and Bottger, E. C. 1989. Isolation and direct complete nucleotide determination of entire genes: characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research.
dc.relation• Escalante-Lozada, A., Gosset-Lagarda, G., Martínez-Jiménez, A y Bolívar-Zapata, F. 2004. Soil bacterial diversity: microbial culture-independent methods of study and biotechnological implications. Agrociencia.
dc.relation• Esteve-Zarzoso, B., Belloch, C., Uruburu, F. y Querol, A. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic Bacteriology
dc.relation• Gantzer, C.J., S.H. Anderson, A.L. Thompson, and J.R. Brown. 1991. Evaluation of soil loss after 100 years of soil and crop management. Agronomy Journal.
dc.relation• Jensen, M. A., Webster, J. A. and Straus, N. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology
dc.relation• Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H.y Trevors, J. T. 2004. Methods of studying soil microbial diversity. J. Microbiol. Meth
dc.relation• Marchandin, H., Teyssier, C., Simeon de Buochberg, M., Jean-Pierre, H., Carriere, C., Jumas-Bilak, E. 2003. Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology.
dc.relation• Olembo, R. 1991. The biodiversity of microorganisms and invertebrates: Its rolein sustainable agricultura. Redwood Press, Melksham, UK.
dc.relation• Rodicio, M & Mendoza, M. 2005. Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica
dc.relation• Wright, S.F., Upadhyaya, A., 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil.
dc.relation• Wright, S.F., Upadhyaya, A., 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil.
dc.relation• Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol.
dc.relation• Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol.
dc.relation• Zuckerkandl, E., Pauling, L. 1965. Molecules as documents of evolutionary history.J Theor Biol
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsDerechos Reservados Universidad del Quindío
dc.titleCaracterización molecular de microorganismos de suelo en tres tipos de coberturas vegetales del campus de la Universidad del Quindío
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución