dc.creatorCortes Zarta, Juan F.
dc.creatorGiraldo Tique, Yesica A.
dc.creatorVergara Ramírez, Carlos F.
dc.date.accessioned2023-08-17T16:28:28Z
dc.date.accessioned2023-09-06T19:31:57Z
dc.date.available2023-08-17T16:28:28Z
dc.date.available2023-09-06T19:31:57Z
dc.date.created2023-08-17T16:28:28Z
dc.date.issued2021-10-01
dc.identifierhttps://hdl.handle.net/20.500.14329/586
dc.identifier1390-6542
dc.identifierEscuela Tecnológica Instituto Técnico Central
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8702347
dc.description.abstractEn el desarrollo de los robots de asistencia un reto importante consiste en mejorar la percepción espacial de los robots para la identificación de objetos en diversos escenarios. Para ello, es preciso desarrollar herramientas de análisis y procesamiento de datos de visión estereoscópica artificial. Por esta razón, el presente artículo describe un algoritmo de redes neuronales convolucionales (CNN) implementado en una Raspberry Pi 3 ubicada en la cabeza de una réplica del robot humanoide de código abierto InMoov para estimar la posición en X, Y, Z de un objeto dentro de un entorno controlado. Este artículo explica la construcción de la parte superior del robot InMoov, la aplicación de Trans fer Learning para detectar y segmentar un objeto dentro de un entorno controlado, el desarrollo de la arquitectura CNN y, por último, la asignación y evaluación de parámetros de entrenamiento. Como resultado, se obtuvo un error promedio estimado de 27 mm en la coordenada X, 21 mm en la coordenada Y y 4 mm en la coordenada Z. Estos datos son de gran impacto y necesarios al momento de usar esas coordenadas en un brazo robótico para que alcance el objeto y lo agarre, tema que queda pendiente para un futuro trabajo.
dc.description.abstractIn the development of assistive robots, a major challenge is to improve the spatial perception of robots for object identification in various scenarios. For this purpose, it is necessary to develop tools for analysis and processing of artificial stereo vision data. For this reason, this paper describes a convolutional neural network (CNN) algorithm implemented on a Raspberry Pi 3, placed on the head of a replica of the open-source humanoid robot InMoov, to estimate the X, Y, Z position of an object within a controlled environment. This paper explains the construction of the InMoov robot head, the application of Transfer Learning to detect and segment an object within a controlled environ ment, the development of the CNN architecture, and, finally, the assignment and evaluation of training parameters. As a result, an estimated average error of 27 mm in the X coordinate, 21 mm in the Y coordinate, and 4 mm in the Z coordinate was obtained; data of great impact and necessary when using these coordinates in a robotic arm to reach and grab the object, a topic that remains pending for future work
dc.languagespa
dc.publisherEscuela Tecnológica Instituto Técnico Central
dc.publisherBogotá
dc.relation104
dc.relation4
dc.relation88
dc.relation12
dc.relationEnfoque UTE
dc.relationChansong, D., y Supratid, S. (2021). Impacts of kernel size on different resized images in object recogni tion based on convolutional neural network. 9th International Electrical Engineering Congress (iEECON): 448-451. https://doi.org/10.1109/ieecon51072.2021.9440284
dc.relationDemby’s, J., et al., (2019). Object detection and pose estimation using CNN in embedded hardware for assistive technology. IEEE Symposium Series on Computational Intelligence (SSCI). https://doi. org/10.1109/ssci44817.2019.9002767
dc.relationEnucă, R. (2019) Dual-input CNN with Keras. https://medium.datadriveninvestor.com/dual-input-cnn with-keras-1e6d458cd979
dc.relationGeron, A. (2019b). Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.
dc.relationGhosh A., et al., (2020) Fundamental Concepts of Convolutional Neural Network. En Balas V., Kumar R., Sri vastava R. (eds) Recent Trends and Advances in Artificial Intelligence and Internet of Things. In telligent Systems Reference Library. Springer. https://doi.org/10.1007/978-3-030-32
dc.relationGonzález, J., et al., (2008). La Silla RobÓTica SENA. Un enfoque basado en la interacción hombre-máquina. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2): 38-47. https://doi. org/10.1016/s1697-7912(08)70143-2
dc.relationHassan, H. F.; Abou-Loukh, S. J., y Ibraheem, I. K. (2020). Teleoperated robotic arm movement using elec tromyography signal with wearable Myo armband. Journal of King Saud University-Engineering Sciences, 32(6): 378-387. https://doi.org/10.1016/j.jksues.2019.05.001
dc.relationHuang, B., et al., (2020). Improving head pose estimation using two-stage ensembles with top-k re gression. Image and Vision Computing, 93(103827): 103827. https://doi.org/10.1016/j.ima vis.2019.11.005
dc.relationJardón, A., et al., (2008). Asibot: Robot portátil de asistencia a discapacitados. Concepto, arquitectura de control y evaluación clínica. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2): 48-59. https://doi.org/10.1016/s1697-7912(08)70144-4
dc.relationKerstens, H., et al. (2020). Stumbling, struggling, and shame due to spasticity: a qualitative study of adult persons with hereditary spastic paraplegia. Disability and Rehabilitation, 42(26): 3744-3751. https://doi.org/10.1080/09638288.2019.1610084
dc.relationKhirirat, S., Feyzmahdavian, H. R., & Johansson, M. (2017). Mini-batch gradient descent: Faster convergen ce under data sparsity. IEEE 56th Annual Conference on Decision and Control (CDC). https://doi. org/10.1109/cdc.2017.8264077 \
dc.relationLangevin, G. (2012). InMoov -open-source 3D printed life-size robot. https://inmoov.fr
dc.relationLee S., y Saitoh T. (2018) Head Pose Estimation Using Convolutional Neural Network. En Kim K., Kim H., Baek N. (eds) IT Convergence and Security 2017. Lecture Notes in Electrical Engineering. Sprin ger. https://doi.org/10.1007/978-981-10-6451-7_20
dc.relationLeitner, J., et al., (2013). Artificial neural networks for spatial perception: Towards visual object localisa tion in humanoid robots. The 2013 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2013.6706819
dc.relationLi, J., et al., (2021). An integrated approach for robotic Sit-To-Stand assistance: Control framework design and human intention recognition. Control Engineering Practice, 107(104680): 104680. https:// doi.org/10.1016/j.conengprac.2020.104680
dc.relationLillicrap, T. P., et al., (2020). Backpropagation and the brain. Nature Reviews. Neuroscience, 21(6): 335- 346. https://doi.org/10.1038/s41583-020-0277-3
dc.relationMinisterio de Salud y Protección Social de Colombia. (2019). Sala situacional de las personas con dis capacidad. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala situacional-discapacidad2019-2-vf.pdf
dc.relationMiseikis, J., et al., (2018). Robot localisation and 3D position estimation using a free-moving camera and cascaded convolutional neural networks. IEEE/ASME International Conference on Advanced In telligent Mechatronics (AIM). https://doi.org/10.1109/aim.2018.8452
dc.relationO’Mahony N. et al. (2020) Deep Learning vs. Traditional Computer Vision. En Arai K., Kapoor S. (eds) Advan ces in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing. Springer. https://doi.org/10.1007/978-3-030-17795-9_10
dc.relationPoernomo, A., y Kang, D.-K. (2018). Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network. Neural Networks: The Official Journal of the International Neural Network Society, 104: 60-67. https://doi.org/10.1016/j.neu net.2018.03.016
dc.relationPramod, R. T., Katti, H., & Arun, S. P. (2018). Human peripheral blur is optimal for object recognition. http:// arxiv.org/abs/1807.08476
dc.relationQi, J., et al., (2020). On mean absolute error for deep neural network based vector-to-vector regression. IEEE Signal Processing Letters, 27: 1485-1489. https://doi.org/10.1109/lsp.2020.3016837
dc.relationQin, Z., et al., (2018). How convolutional neural networks see the world. A survey of convolutional neu ral network visualization methods. Mathematical Foundations of Computing, 1(2): 149-180. https://doi.org/10.3934/mfc.2018008
dc.relationRedmon, J., y Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767
dc.relationSmola, A., y Vishwanathan, S. (2008). Introduction to Machine Learning. https://alex.smola.org/drafts/ thebook.pdf
dc.relationTzutalin. (2015). LabelImg Free Software: MIT License. https://github.com/tzutalin/labelImg
dc.relationValencia, N. O., et al., (2016). Movement detection for object tracking applied to the InMoov robot head. XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA). https://doi.org/10.1109/ stsiva.2016.7743328
dc.relationWozniak P., et al., (2018) Scene Recognition for Indoor Localization of Mobile Robots Using Deep CNN. En Chmielewski L., et al., (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Com puter Science. Springer. https://doi.org/10.1007/978-3-030-00692-1_1
dc.relationXu, Y., y Wang, Z. (2021). Visual sensing technologies in robotic welding: Recent research developments and future interests. Sensors and Actuators. A, Physical, 320(112551), 112551. https://doi. org/10.1016/j.sna.2021.112551
dc.relationZhang, Z.; Song, Y., y Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/ cvpr.2017.463
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleRed neuronal convolucional para la percepción espacial del robot InMoov a través de visión estereoscópica como tecnología de asistencia
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución