dc.contributorLeón, Francisco Javier
dc.contributorNovoa-Lizarazo, Leidy Viviana
dc.contributorChacín-Zambrano, Christian Andrei
dc.creatorSaldaña-Cabrales, Miguel Fernando
dc.date.accessioned2023-03-02T18:52:31Z
dc.date.accessioned2023-09-06T18:54:59Z
dc.date.available2023-03-02T18:52:31Z
dc.date.available2023-09-06T18:54:59Z
dc.date.created2023-03-02T18:52:31Z
dc.date.issued2023-01-24
dc.identifierUniversidad de Santander
dc.identifierT 33.23 S142a
dc.identifierRepositorio Digital Universidad de Santander
dc.identifierhttps://repositorio.udes.edu.co
dc.identifierhttps://repositorio.udes.edu.co/handle/001/8124
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8701089
dc.description.abstractLas micotoxinas producidas por hongos presentes en los productos agroalimentarios como los granos son asociadas en gran medida a la aparición de enfermedades que afectan la salud pública, siendo de importancia implementar métodos de detección. En ese sentido, este trabajo se centró investigar avances acerca de las metodologías para la detección de aflatoxinas. Para lograrlo se realizó una búsqueda sistemática de la información en la base de datos Scopus, aplicando un ajuste a los pasos del flujo de trabajo de la cartografía científica propuesta por (Cobo et al., 2012) para posteriormente ajustar los resultados según lo propuesto por (Beltrán-Arismendi, 2020). El empleo de herramientas bibliográficas y análisis de redes como Mendeley, VOSviewer, SciMAT y Gephi permitieron identificar 330 documentos entre artículos, revisiones, ponencias y libros, y con base a ello se encontró gran número de métodos aplicables (42 métodos) que se podrían implementar a futuro en Colombia dado a su sensibilidad, especificidad, costo de operación e infraestructura. Se evidencio que los métodos biológicos son los más adecuados para la identificación de aflatoxinas en muestras de granos a nivel mundial, siendo específicos y sensibles, simples en el proceso de manipulación de la muestra, rápidos y más económicos que los químicos y físicos. Y finalmente se recomienda seguir investigando en otras micotoxinas y así encontrar puntos convergentes sobre los métodos de detección para ser implementados en Colombia.
dc.description.abstractThe mycotoxins produced by fungi present in agri-food products such as grains are largely associated with the appearance of diseases that affect public health, and it is important to implement detection methods. In this sense, this work focused on investigating advances about the methodologies for the detection of aflatoxins. To achieve this, a systematic search for information was carried out in the Scopus database, applying an adjustment to the steps of the scientific cartography workflow proposed by (Cobo et al., 2012) to later adjust the results as proposed by (Beltrán-Arismendi, 2020). The use of bibliographic tools and network analysis such as Mendeley, VOSviewer, SciMAT and Gephi allowed the establishment of 330 documents including articles, reviews, papers and books, and based on this, a large number of applicable methods (42 methods) were found that could be implemented. in the future in Colombia given its sensitivity, specificity, cost of operation and infrastructure. It was evidenced that biological methods are the most suitable for the identification of aflatoxins in grain samples worldwide, being specific and sensitive, simple in the sample handling process, fast and cheaper than chemical and physical methods. And finally, it is recommended to continue investigating other mycotoxins and thus find convergent points on the detection methods to be implemented in Colombia.
dc.languagespa
dc.publisherUniversidad de Santander
dc.publisherBucaramanga
dc.publisherFacultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisherBucaramanga, Colombia
dc.publisherMicrobiología Industrial
dc.relationAbbas, M., & Abbas, M. (2021). Chromatographic Techniques for Estimation of Aflatoxins in Food Commodities. Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. https://doi.org/10.5772/INTECHOPEN.98508
dc.relationAbdel-gawad, K. M., & Zohri, A. A. (1993). Fungal flora and mycotoxins of six kinds of nut seeds for human consumption in Saudi Arabia. 55–64.
dc.relationAbid, S. A., Ahmed Muneer, A., Al-Kadmy, I. M. S., Sattar, A. A., Beshbishy, A. M., Batiha, G. E. S., & Hetta, H. F. (2021). Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 273(January), 119117. https://doi.org/10.1016/j.lfs.2021.119117
dc.relationAcosta, E. (2022). POSIBLE riesgo carcinogénico en lactantes por presencia de aflatoxina m1 en leche materna asociado al consumo de alimentos de sus madrES.
dc.relationAcuña, C. A., Díaz, G. J., & Espitia, M. E. (2005). Aflatoxinas En Maíz: Reporte De Caso En La Costa Atlántica Colombiana. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 52, 156–162. http://www.revistas.unal.edu.co/index.php/remevez/article/viewFile/17847/18759
dc.relationAdányi, N., Nagy, Á. G., Takács, B., Szendrő, I., Szakacs, G., Szűcs, R., Tóth-Szeles, E., Lagzi, I., Weiser, D., Bódai, V., Sátorhelyi, P., & Erdélyi, B. (2018). Sensitivity enhancement for mycotoxin determination by optical waveguide lightmode spectroscopy using gold nanoparticles of different size and origin. Food Chemistry, 267(February 2017), 10–14. https://doi.org/10.1016/j.foodchem.2018.04.089
dc.relationAdetunji, M. C., Ngoma, L., Atanda, O. O., & Mwanza, M. (2019). A polyphasic method for the identification of aflatoxigenic Aspergilla from cashew nuts. World Journal of Microbiology and Biotechnology, 35(1), 0. https://doi.org/10.1007/s11274-018-2575-8
dc.relationAgriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in Analysis and Detection of Major Mycotoxins in Foods. 1–23.
dc.relationAguilar, F., Hussain, S. P., & Cerutti, P. (1993). Aflatoxin B1 induces the transversion of G → T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8586–8590. https://doi.org/10.1073/PNAS.90.18.8586
dc.relationAguilar, L. (2018). Cuantificación de formaldehído por CLAR acoplado a UV-Vis y espectrofotometría en cremas que contienen agentes liberadores de formaldehído.
dc.relationAl-jaal, B., Salama, S., Al-qasmi, N., & Jaganjac, M. (2019). Mycotoxin contamination of food and feed in the Gulf Cooperation Council countries and its detection. Toxicon. https://doi.org/10.1016/j.toxicon.2019.10.003
dc.relationAlbakri, A. H., Al-Shuhaib, M. B. S., Alwan, S. L., AbdulAzeez, S., & Borgio, J. F. (2020). Deleterious missense variants in the aflatoxin biosynthesis genes explain the low toxicity of Aspergillus flavus from infected rice. Microbial Pathogenesis, 152(November), 104605. https://doi.org/10.1016/j.micpath.2020.104605
dc.relationAltamirano, J. R. (2019). Aflatoxinas AFM1 en leche de consumo : aspectos toxicológicos y metodológicos de evaluación pericial. https://rdu.unc.edu.ar/handle/11086/14126
dc.relationAndrade, J. M., Santos, R. F. dos, Chelysheva, I., Ignatova, Z., & Arraiano, C. M. (2018). The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. The EMBO Journal, 37(11), e97631. https://doi.org/10.15252/EMBJ.201797631
dc.relationAndrade, P. D., Mello, M. H. De, França, J. A., & Caldas, E. D. (2013). Food Additives & Contaminants : Part A Aflatoxins in food products consumed in Brazil : a preliminary dietary risk assessment. November 2014, 37–41. https://doi.org/10.1080/19440049.2012.720037
dc.relationArce-López, B., Lizarraga, E., López de Mesa, R., & González-Peñas, E. (2021). Assessment of Exposure to Mycotoxins in Spanish Children through the Analysis of Their Levels in Plasma Samples. Toxins, 13(2). https://doi.org/10.3390/TOXINS13020150
dc.relationAshiq, S. (2015). Natural Occurrence of Mycotoxins in Food and Feed: Pakistan Perspective. Comprehensive Reviews in Food Science and Food Safety, 14(2), 159–175. https://doi.org/10.1111/1541-4337.12122
dc.relationBaazeem, A., Rodríguez, A., Medina, Á., & Magan, N. (2021). Impacts of Climate Change Interacting Abiotic Factors on Growth , aflD and aflR Gene Expression and Aflatoxin B 1 Pistachio Nuts.
dc.relationBadea, M., Micheli, L., Messia, M. C., Candigliota, T., Marconi, E., Mottram, T., Velasco-Garcia, M., Moscone, D., & Palleschi, G. (2004). Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Analytica Chimica Acta, 520(1–2), 141–148. https://doi.org/10.1016/j.aca.2004.05.068
dc.relationBallesteros, A. (2014). Evaluación de la prevalencia de aflatoxina m1 (afm1) en la leche materna y su relación con la fuente dietaria de aflatoxinas. caso estudio: nabón, ecuador. 1.
dc.relationBánáti, H., Darvas, B., Fehér-Tóth, S., Czéh, Á., & Székács, A. (2017). Determination of mycotoxin production of fusarium species in genetically modified maize varieties by quantitative flow immunocytometry. Toxins, 9(2), 1–12. https://doi.org/10.3390/toxins9020070
dc.relationBarragán Quishpe, J. A. (2020). Importancia de la detección de aflatoxinas en frutos secos, en la seguridad alimentaria. https://riunet.upv.es/handle/10251/151684
dc.relationBarrios, G., & Echenique, M. (2011). Estudios preliminares para la implementación de métodos de almacenamiento y de conservación de alimentos en buques en altamar. universidad de cartagena facultad de ingenierías programa de ingeniería de alimento. https://repositorio.unicartagena.edu.co/bitstream/handle/11227/531/tesis de tesis.pdf
dc.relationBeatriz, N. (2004). Guía toxicológica para el manejo de pacientes intoxicados que ingresan al servicio de emergencia del departamento de pediatría del hospital roosevelt . in universidad de san carlos de guatemala facultad de ciencias químicas y farmacia. https://biblioteca-farmacia.usac.edu.gt/Tesis/QF899.pdf
dc.relationBeltrán-Arismendi, C. (2020). Enfoques emergentes desde las artes y el diseño para la teorización y creación de experiencias transmedia. Aproximación desde el metaanálisis de publicaciones científicas. Arte, Individuo y Sociedad, 32(4), 1039–1064. https://doi.org/10.5209/ARIS.66552
dc.relationBennett, J. W., & Moore, G. G. (2019). Mycotoxins. Encyclopedia of Microbiology, February, 267–273. https://doi.org/10.1016/B978-0-12-801238-3.02409-0
dc.relationBervis Semilanelue, N. (2019). Investigación de aflatoxinas en leche y en productos destinados a la alimentación animal / Noemi Bervis Semilanelue. http://zaguan.unizar.es
dc.relationBhardwaj, H., Sumana, G., & Marquette, C. A. (2019a). A Label-Free Ultrasensitive Microfluidic Surface Plasmon Resonance Biosensor for Aflatoxin B1 detection using Nanoparticles integrated Gold chip. Food Chemistry, 125530. https://doi.org/10.1016/j.foodchem.2019.125530
dc.relationBoris, I. A., & Camiletti, X. (2019). Estrategias de manejo de Aspergillus Flavus y penicillium spp . para la reducción de los niveles de micotoxinas en MAÍZ. https://ri.conicet.gov.ar/handle/11336/92372
dc.relationBouhoudan, A., Chidi, F., & Khaddor, M. (2020). Effect of sucrose on the physiology and terrestric acid production of penicillium aurantiogriseum. Agriculture and Forestry, 66(1), 179–189. https://doi.org/10.17707/AgricultForest.66.1.17
dc.relationBray, F., Ferlay, J., & Soerjomataram, I. (2018). Global Cancer Statistics 2018 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. American Cancer Society, 00(00), 1–31. https://doi.org/10.3322/caac.21492
dc.relationBusman, M. (2018). Quantitation of mycotoxins using direct analysis in real time mass spectrometry (DART-MS). Journal of AOAC International, 101(3), 643–646. https://doi.org/10.5740/jaoacint.17-0338
dc.relationCaceres, I., Khoury, A. Al, Khoury, R. El, Lorber, S., Oswald, I. P., Khoury, E., Atoui, A., Puel, O., & Bailly, J. (2020). Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 1.
dc.relationCai, J., Zeng, H., Shima, Y., Hatabayashi, H., Nakagawa, H., Ito, Y., Adachi, Y., Nakajima, H., & Yabe, K. (2008). Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus. 45, 1081–1093. https://doi.org/10.1016/j.fgb.2008.03.003
dc.relationCalisaya Tipo, M. L., & Pinto Quea, J. C. (2018). Aflatoxinas en cereales comercializados a granel en mercados del distrito de Villa María del Triunfo, Lima 2018. Repositorio Institucional - UIGV. http://repositorio.uigv.edu.pe/handle/20.500.11818/3238
dc.relationCameán, A., Mellado, E., & Repetto, M. (2006). Contaminantes Biológicos. Toxicología Alimentaria, 251–272.
dc.relationCampmajó, G., Saurina, J., & Núñez, O. (2022). FIA–HRMS fingerprinting subjected to chemometrics as a valuable tool to address food classification and authentication: Application to red wine, paprika, and vegetable oil samples. Food Chemistry, 373. https://doi.org/10.1016/j.foodchem.2021.131491
dc.relationCao, X., Li, X., Li, J., Niu, Y., Shi, L., Fang, Z., Zhang, T., & Ding, H. (2018). Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1073, 191–200. https://doi.org/10.1016/j.jchromb.2017.10.006
dc.relationCarillo, L. (2003). Los Hongos De Los Alime Ntos Y Forraje S Profesora Titular. Universidad Nacional de Salta. https://d1wqtxts1xzle7.cloudfront.net/55362329/_LEONOR_CARRILLO__Los_Hongos_de_los_Alimentos_y_FoBookZZ.org-libre.pdf?1514037634=&response-content-disposition=inline%3B+filename%3DLEONOR_CARRILLO_Los_Hongos_de_los_Alime.pdf&Expires=1674882330&Signature=SP3p80735yeQd1-BmkpTH7bLysoJ4Rx0BAk-u2g9Fs5Bl5CXCAO3C706R3~JjAVBiRA1SpQbTTqeRCuojh02OzMIyv-sgkMHgoHnsSwlozSZsGhZvLYi9Jc0giz9TQQUk6DGv1jWkYQhIweaUhUE1hUuzimRsJtDz0n558JL8d~OiQUfGNdRgCRuULrSUe6-1eLgV6wLxH8mUUz9Ey8s2g3evm00a1Irpa7Saxz-aWeDl-aPAFj2Sug
dc.relationCarvajal, M. (2013). Transformación de la aflatoxina B1 de alimentos, en el cancerígeno humano, aducto AFB1 -ADN. 16(2), 109–120.
dc.relationCastro, L., & Vargas, E. (2001). Determining aflatoxins B1, B2, G1 and G2 in maize using florisil clean up with thin layer chromatography and visual and densitometric quantification. Food Science and Technology, 21(1), 115–122. https://doi.org/10.1590/S0101-20612001000100024
dc.relationCavaliere, C., Foglia, P., Pastorini, E., Samperi, R., & Laganà, A. (2006). Liquid chromatography/tandem mass spectrometric confirmatory method for determining aflatoxin M1 in cow milk: Comparison between electrospray and atmospheric pressure photoionization sources. Journal of Chromatography A, 1101(1–2), 69–78. https://doi.org/10.1016/j.chroma.2005.09.060
dc.relationChala, A., Taye, W., Ayalew, A., Krska, R., Sulyok, M., & Logrieco, A. (2014). Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control, 45, 29–35. https://doi.org/10.1016/J.FOODCONT.2014.04.018
dc.relationChauhan, R., Singh, J., Solanki, P. R., Manaka, T., Iwamoto, M., Basu, T., & Malhotra, B. D. (2016). Sensors and Actuators B : Chemical Label-free piezoelectric immunosensor decorated with gold nanoparticles : Kinetic analysis and biosensing application. Sensors & Actuators: B. Chemical, 222, 804–814. https://doi.org/10.1016/j.snb.2015.08.117
dc.relationChen, G., Gong, Y. Y., Kimanya, M. E., & Shirima, C. P. (2017). Comparison of urinary aflatoxin M1 and aflatoxin albumin adducts as biomarkers for assessing aflatoxin exposure in Tanzanian children. Biomarkers, 0(0), 000. https://doi.org/10.1080/1354750X.2017.1285960
dc.relationChen, M., He, X., Pang, Y., Shen, F., Fang, Y., & Hu, Q. (2021). Laser induced fluorescence spectroscopy for detection of Aflatoxin B1 contamination in peanut oil. Journal of Food Measurement and Characterization, 15(3), 2231–2239. https://doi.org/10.1007/s11694-021-00821-0
dc.relationChen, Q., Meng, M., Li, W., Xiong, Y., Fang, Y., & Lin, Q. (2023). Emerging biosensors to detect aflatoxin M1 in milk and dairy products. Food Chemistry, 398, 133848. https://doi.org/10.1016/J.FOODCHEM.2022.133848
dc.relationCheng, X., Vella, A., & Stasiewicz, M. J. (2019). Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control, 98, 253–261. https://doi.org/10.1016/j.foodcont.2018.11.037
dc.relationChiminelli, I., Spicer, L. J., Maylem, E. R. S., & Caloni, F. (2022). Emerging mycotoxins and reproductive effects in animals: A short review. Journal of Applied Toxicology, 42(12), 1901–1909. https://doi.org/10.1002/JAT.4311
dc.relationChiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L., & Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina de Microbiologia, 52(4), 339–347. https://doi.org/10.1016/j.ram.2020.06.002
dc.relationCinar, A., & Onbaşı, E. (2020). Mycotoxins : The Hidden Danger in Foods. The Hidden Danger in Foods.
dc.relationCinquanta, L., Fontana, D. E., & Bizzaro, N. (2017). Chemiluminescent immunoassay technology: what does it change in autoantibody detection? Autoimmunity Highlights, 8(1). https://doi.org/10.1007/s13317-017-0097-2
dc.relationCobo, M. J., Lõpez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/ASI.22688
dc.relationCoello Vizcaíno, L. H. (2017). Análisis cuantitativo de aflatoxinas en muestras de alimento de consumo infantil en la ciudad de Ventanas. https://repositorio.uteq.edu.ec/handle/43000/2032
dc.relationCosta, J., Lima, N., & Santos, C. (2021). An overview on possible links between aflatoxin B1 exposure and gallbladder cancer. Mycotoxin Research, 37(3), 205–214. https://doi.org/10.1007/s12550-021-00431-1
dc.relationCristina, P., Rodrigues, A., Gil-serna, J., & González-jaén, M. T. (2017). Evaluating Afl atoxin Gene Expression in Aspergillus Section Flavi. 1542, 237–247. https://doi.org/10.1007/978-1-4939-6707-0
dc.relationCunha, S. C., Sá, S. V. M., & Fernandes, J. O. (2018). Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food and Chemical Toxicology, 114, 260–269. https://doi.org/10.1016/j.fct.2018.02.039
dc.relationDana, M. A., Kordbacheh, P., Ghazvini, R. D., Moazeni, M., Nazemi, L., & Rezaie, S. (2018). Inhibitory effect of vitamin C on. 4(3), 10–14. https://doi.org/10.18502/cmm.4.3.170 de salud y protección social, M. (2014). Resolución número 0770 del 2014.
dc.relationDecana, P., Carmen, Q. F. B., Flores, L., Teresa, M., Arbaiza, S., & Coasesora, F. (2021). Universidad Nacional Mayor de San Marcos Determinación de fumonisinas en granos y corontas de Zea mays L . ( maíz variedad morada ) con el método ELISA competitivo directo ( CD ) Para optar el Título Profesional de Químico Farmacéutico.
dc.relationDelgado, J., Bermúdez, E., Asensio, M. A., & Núñez, F. (2021). Molecular Identification and Subtyping of Toxigenic and Pathogenic Penicillium and Talaromyces. Molecular Food Microbiology, 289–307. https://doi.org/10.1201/9781351120388-22
dc.relationDelmulle, B. S., De Saeger, S. M. D. G., Sibanda, L., Barna-Vetro, I., & Van Peteghem, C. H. (2005). Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. Journal of Agricultural and Food Chemistry, 53(9), 3364–3368. https://doi.org/10.1021/jf0404804
dc.relationDíaz de León-Martínez, L., Díaz-Barriga, F., Barbier, O., Ortíz, D. L. G., Ortega-Romero, M., Pérez-Vázquez, F., & Flores-Ramírez, R. (2019). Evaluation of emerging biomarkers of renal damage and exposure to aflatoxin-B 1 in Mexican indigenous women: a pilot study. Environmental Science and Pollution Research, 26(12), 12205–12216. https://doi.org/10.1007/s11356-019-04634-z
dc.relationDiaz, G. J., Perilla, N., & Rojas, Y. (2001). Occurrence of Aflatoxins in selected Colombian Foods Abstract A survey of aflatoxin contamination in selected Colombian foods was conducted over a 12-month period on a total of products . The results of the present study indicate that major public health. Mycotoxin Research, 17, 15–20.
dc.relationDiaz, G. J., Perilla, N. S., Espitia, E., Zootecnia, D., Nacional, U., Ltda, M., No, C., Diaz, G. J., & Areo, A. (2004). First Colombian interlaboratory study for the determination of aflatoxin B1 in yellow corn Abstract An interlaboratory study for the determination of aflatoxin B1 in yellow corn was conducted with 16 laboratories that analyze for aflatoxins in Colombia . Mycotoxin Reserach, 20, 11–18.
dc.relationDíaz Pérez, Y. (2006). Los Índices Lineales Moleculares: Un Novedoso Enfoque para la Modelación de la Actividad carcinogénica de compuestos químicos. https://dspace.uclv.edu.cu/bitstream/handle/123456789/2102/Q06016.pdf?sequence=1&isAllowed=y
dc.relationDíaz, S., & de, E. (2019). Identificación de lesiones hepáticas y renales causadas a las gallinas de postura por el consumo crónico de aflatoxinas y su interacción con tres agentes quimioprotectores. http://bdigital.dgse.uaa.mx:8080/xmlui/handle/11317/1759
dc.relationDirección de Alimentos y bebidas. (2019). Informe de resultados del plan nacional subsectorial de vigilancia y control de residuos de medicamentos veterinarios.
dc.relationDos Reis, K. L., & Barbosa-Tessmann, I. P. (2021). Genetic variability of aspergillus flavus isolated from commercial peanut and bulgur wheat in southern brazil and antifungal activity of essential oils against some of the isolates. Genetics and Molecular Research, 20(2). https://doi.org/10.4238/gmr18787
dc.relationDowell, F. E. (2016). Detecting Aflatoxin in Agricultural Commodities. 1–7. https://www.gipsa.usda.gov/fgis/public_handbooks.aspx
dc.relationDuan, H., Chen, X., Xu, W., Fu, J., Xiong, Y., & Wang, A. (2015). Talanta Quantum-DoT submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta, 132, 126–131. https://doi.org/10.1016/j.talanta.2014.08.076
dc.relationDuarte-Vogel, S., & Villamil-Jiménez, L. C. (2006). Micotoxins in public health | Micotoxinas en la Salud Pública. Revista de Salud Publica, 8(SUPPL. 1), 129–135. https://doi.org/10.1590/S0124-00642006000400011
dc.relationEkwomadu, T., Mwanza, M., & Musekiwa, A. (2022). Mycotoxin-Linked Mutations and Cancer Risk: A Global Health Issue. International Journal of Environmental Research and Public Health, 19(13). https://doi.org/10.3390/ijerph19137754
dc.relationEl-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/J.JFUTFO.2022.03.002
dc.relationEL-Shaer, H., Shoukry, A., & Youness, H. (2021). Detection aflatoxin production by local isolates of Aspergillus spp. and molecular characterization. Archives of Agriculture Sciences Journal, 0(0), 45–63. https://doi.org/10.21608/aasj.2021.101616.1091
dc.relationEl-tawab, A. A. A., El-hofy, F., Mahmoud, A., & Rashed, D. (2019). Determination of aflatoxins by HPLC and the identification of biosynthetic nor- 1 gene of aflatoxinsin poultry products by PCR assay. 2, 161–186.
dc.relationElfituri, F., Eltariki, M., Tiwari, K., & Ariffin, I. A. (2018). Genetic Diversity of Fungi Producing Mycotoxins in Stored Crops. 12, 1815–1823.
dc.relationEmri, T., Zalka, A., & Pócsi, I. (2017). Detection of Transcriptionally Active Mycotoxin Gene Clusters : DNA Microarray. 1542. https://doi.org/10.1007/978-1-4939-6707-0
dc.relationEshelli, M., Qader, M. M., Jambi, E. J., Hursthouse, A. S., & Rateb, M. E. (2018). Current status and future opportunities of omics tools in mycotoxin research. Toxins, 10(11), 1–26. https://doi.org/10.3390/toxins10110433
dc.relationEsmaeilishirazifard, E., Dariush, A., Moschos, S. A., & Keshavarz, T. (2018). A novel antifungal property for the Bacillus licheniformis ComX pheromone and its possible role in inter-kingdom cross-talk.
dc.relationEsteve, G. M. (2016). Evaluation of mycotoxin contamination in baby food.
dc.relationFAO. (2004). Reglamentos a nivel mundial para las micotoxinas en los alimentos y en las raciones en el año 2003. https://www.fao.org/3/y5499s/y5499s.pdf
dc.relationFAO. (2022). Food safety and quality: Micotoxinas. https://www.fao.org/food/food-safety-quality/a-z-index/mycotoxins/es/
dc.relationFarag, A., Sheikha, E., & Pcr-dgge, C. U. (2019). Molecular Detection of Mycotoxigenic Fungi in Foods : The Case for Using PCR-DGGE Molecular Detection of Mycotoxigenic Fungi in Foods : The. Food Biotechnology, 33(1), 54–108. https://doi.org/10.1080/08905436.2018.1547644
dc.relationFemenias, A., Gatius, F., Ramos, A. J., Sanchis, V., & Marín, S. (2020). Use of hyperspectral imaging as a tool for Fusarium and deoxynivalenol risk management in cereals : A review. Food Control, 108(July 2019), 106819. https://doi.org/10.1016/j.foodcont.2019.106819
dc.relationFENALCE. (2022). Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. https://fenalce.co/
dc.relationFerrufino-Guardia E., Chavez-Rico V., L. Y. (2019). Ochratoxin a in human breast milk , maternal and placental blood from. Rev. Toxicol, 36(2), 116–125.
dc.relationFukuda, S., Varshney, A., Fowler, B. J., Wang, S. Bin, Narendran, S., Ambati, K., Yasuma, T., Magagnoli, J., Leung, H., Hirahara, S., Nagasaka, Y., Yasuma, R., Apicella, I., Pereira, F., Makin, R. D., Magner, E., Liu, X., Sun, J., Wang, M., … Ambati, J. (2021). Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 118(6). https://doi.org/10.1073/pnas.2022751118
dc.relationGao, Y., Zhou, Y., & Chandrawati, R. (2020). Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Applied Nano Materials, 3(1), 1–21. https://doi.org/10.1021/acsanm.9b02003
dc.relationGarcía Olivares, J. Á. (2019). “Importancia De Las Micotoxinas En La Industria Pecuaria.” Journal of Chemical Information and Modeling, 9, 23–25. http://ri.uaemex.mx/bitstream/handle/20.500.11799/109994/TesinaGarciaOlivares2020...pdf?sequence=1&isAllowed=y García Román, N. (2022). Micotoxinas en panificación. https://uvadoc.uva.es/handle/10324/55727
dc.relationGeleta, G. S. (2022). A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Analytical and Bioanalytical Chemistry 2022 414:24, 414(24), 7103–7122. https://doi.org/10.1007/S00216-022-04227-9
dc.relationGeneva. (2020). Toxicological evaluation of certain veterinary drug residues in food. WHO Food Additives Series, No. 76. http://apps.who.int/bookorders.
dc.relationGilbert, M. K., Majumdar, R., Rajasekaran, K., Chen, Z.-Y., Wei, Q., Sickler, C. M., Lebar, M. D., Cary, J. W., Frame, B. R., & Wang, K. (2018). RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta, 247(6), 1465–1473. https://doi.org/10.1007/s00425-018-2875-0
dc.relationGirardi, N. S. (2018). Estudios para la producción de formulados fungicidas para Aspergillus sección Flavi en ecosistemas de almacenamiento de maní. https://ri.conicet.gov.ar/handle/11336/144921
dc.relationGonzalez, S., & Gutiérrez, C. (2019). Biorreactores empleados para la biorremediación de aflatoxinas. 10(3), 235–239.
dc.relationGórny, R. L., Stobnicka-kupiec, A., & Gołofit-szymczak, M. (2022). Viral , bacterial , and fungal contamination of Automated Teller Machines ( ATMs ). 29(3), 383–393. https://doi.org/10.26444/aaem/152838
dc.relationGu, Y., Wang, Y., Wu, X., Pan, M., Hu, N., Wang, J., & Wang, S. (2019). Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly ( o -aminothiophenol ) with gold nanoparticles for the determination of aflatoxin B1. Sensors & Actuators: B. Chemical, 291(January), 293–297. https://doi.org/10.1016/j.snb.2019.04.092
dc.relationHan, Z., & Gao, J. (2019). Pixel-level a fl atoxin detecting based on deep learning and hyperspectral imaging. Computers and Electronics in Agriculture, 164(May), 104888. https://doi.org/10.1016/j.compag.2019.104888
dc.relationHe, L., Shen, Z., Wang, J., Zeng, J., Wang, W., Wu, H., Wang, Q., & Gan, N. (2020). Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin , aflatoxin M1 , and 17 β -estradiol based on magnetic tripartite DNA assembly nanostructure probes.
dc.relationHerrera Cercado, E., & Llontop Valdera, F. (2020). Características Bromatológicas Y Concentración De Aflatoxina B1.
dc.relationHigadera, M. (2018). Efecto de recubrimientos nanoestructurados con quitosano y/o propóleo sobre el desarrollo in vitro de Aspergillus flavus y producción de aflatoxinas. http://riaa.uaem.mx/xmlui/handle/20.500.12055/2553
dc.relationHong, F., Huang, C., Wu, L., Wang, M., Chen, Y., & She, Y. (2021). Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosensors and Bioelectronics, 192. https://doi.org/10.1016/j.bios.2021.113489
dc.relationHu, X., Yao, J., Wang, F., Yin, M., Sun, Y., Hu, M., Shi, Q., & Zhang, G. (2018). Eu3+-labeled IgG-based time-resolved fluoroimmunoassay for highly sensitive detection of aflatoxin B1 in feed. Journal of the Science of Food and Agriculture, 98(2), 674–680. https://doi.org/10.1002/JSFA.8514
dc.relationHu, X., Zhang, P., Wang, D., Jiang, J., Chen, X., Liu, Y., Zhang, Z., Tang, B. Z., & Li, P. (2021). AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosensors and Bioelectronics, 182. https://doi.org/10.1016/j.bios.2021.113188
dc.relationIARC. (2002). Aflatoxins. Chemical Carcinogens. Chem. Abstr. Serv, 945–1361. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100F-23.pdf
dc.relationIARC. (2012). Chemical and physical characteristics of the principal mycotoxins. IARC Sci Publ, 31–38.
dc.relationICONTEC. (2007). NTC 5372. Arepas de maiz refrigeradas. https://www.icontec.org/Sec/Paginas/Agr.aspx
dc.relationICONTEC. (2012). NTC 271. Cereales, leguminosas secas y sus productos molidos. https://www.icontec.org/Sec/Paginas/Agr.aspx
dc.relationICONTEC. (2015). NTC 366. El maiz en grano para consumo. https://www.icontec.org/Sec/Paginas/Agr.aspx
dc.relationICONTEC. (2022). NTC 1232. Método de análisis de aflatoxinas de ocurrencia natural (B1, B2, G1 Y G2). https://www.icontec.org/Sec/Paginas/Agr.aspx
dc.relationInternational Agency for Research on Cancer. (2015). Control De Las Micotoxinas En Los Países De Ingresos Bajos Y Medios. In IARC. Informes de Grupos de Trabajo N°9.
dc.relationJacobsen, B. J. (2014). Good Agricultural and Harvest Practices to Reduce Mycotoxin Contamination in Wheat in Temperate Countries. Mycotoxin Reduction in Grain Chains, 209–219. https://doi.org/10.1002/9781118832790.CH14
dc.relationJaiswar, R., Sarathchandra, G., Shanmugam, S. A., & Felix, N. (2022). Assessment of total aflatoxin ( AFB1 , AFB2 , AFG1 and AFG2 ) in fish feed and feedstuffs by using high performance thin layer chromatography. September.
dc.relationJanik, E., Niemcewicz, M., Ceremuga, M., Stela, M., Saluk-bijak, J., Siadkowski, A., & Bijak, M. (2020). Molecular Aspects of Mycotoxins — A Serious Problem for Human Health.
dc.relationJayasinghe, G. D. T. M., Domínguez-González, R., Bermejo-Barrera, P., & Moreda-Piñeiro, A. (2020). Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1609(xxxx). https://doi.org/10.1016/j.chroma.2019.460431
dc.relationJha, S. N., Jaiswal, P., Kaur, J., & Ramya, H. G. (2021). Rapid Detection and Quantification of Aflatoxin B1 in Milk Using Fourier Transform Infrared Spectroscopy. Journal of The Institution of Engineers (India): Series A, 102(1), 259–265. https://doi.org/10.1007/s40030-020-00507-8
dc.relationJiang, M. P., Zheng, S. Y., Wang, H., Zhang, S. Y., & Sheng, D. (2019). Predictive model of aflatoxin contamination risk associated with granary-stored corn with versicolorin A monitoring and logistic regression. Food Additives & Contaminants: Part A, 00(00), 1–12. https://doi.org/10.1080/19440049.2018.1562226
dc.relationJoginder, S., Vyas, A., Wang, S., & Ram, P. (2020). Microbial Biotechnology: Basic Research and Applications. Springer EBook Collection, 317–320. http://link.springer.com/10.1007/978-981-15-2817-0
dc.relationJorquera, D. (2022). Evaluación de la Capacidad Micotoxigénica de Especies de Fusarium aisladas de Cereales Nacionales. Dpto. de Ciencia y Tecnología de Los Alimentos, Facultad de Farmacia Universidad de Concepción. http://152.74.17.92/bitstream/11594/9490/1/tesis evaluacion de la Capacidad Micotoxigenica de especies..Image.Marked.pdf
dc.relationJuan García, C. (2008). Análisis de aflatoxinas y ocratoxina A en alimentos y evaluación de la ingesta poblacional. https://roderic.uv.es/handle/10550/15889
dc.relationKarczmarczyk, A., Baeumner, A. J., & Feller, K.-H. (2017). Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin A and Aflatoxin M1 in red wine and milk. Electrochimica Acta, 243, 82–89. https://doi.org/10.1016/j.electacta.2017.05.046
dc.relationKatis, I. N., He, P. J. W., Eason, R. W., & Sones, C. L. (2018). Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path. Biosensors and Bioelectronics, 113(February), 95–100. https://doi.org/10.1016/j.bios.2018.05.001
dc.relationKatsurayama, A. M., Martins, L. M., Iamanaka, B. T., Fungaro, M. H. P., Silva, J. J., Frisvad, J. C., Pitt, J. I., & Taniwaki, M. H. (2018). Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market. International Journal of Food Microbiology, 266(August 2017), 213–221. https://doi.org/10.1016/j.ijfoodmicro.2017.12.008
dc.relationKetney, O., Santini, A., & Oancea, S. (2017). Recent aflatoxin survey data in milk and milk products: A review. International Journal of Dairy Technology, 70(3), 320–331. https://doi.org/10.1111/1471-0307.12382
dc.relationKhosa, B. K., Rai, T. S., & Sharma, N. S. (2020). Detection of Aflatoxins in Milk and Feed from Cases of Reproductive Tract Disorders in Cattle and Sheep Detection of Aflatoxins in Milk and Feed from Cases of Reproductive Tract Disorders in Cattle and Sheep and Anil Kumar Arora. November. https://doi.org/10.20546/ijcmas.2020.909.439
dc.relationKim, D.-H., Hong, S.-Y., Kang, J. W., Cho, S. M., Lee, K. R., An, T. K., Lee, C., & Chung, S. H. (2017). Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins, 9(3). https://doi.org/10.3390/toxins9030106
dc.relationKimuli, D., Wang, W., Lawrence, K. C., Yoon, S., Ni, X., & Heitschmidt, G. W. (2018). Utilisation of visible / near-infrared hyperspectral images to classify aflatoxin B 1 contaminated maize kernels Environment for Visualising Images. Biosystems Engineering, 166, 150–160. https://doi.org/10.1016/j.biosystemseng.2017.11.018
dc.relationKimuli, D., Wang, W., Wang, W., Jiang, H., Zhao, X., & Chu, X. (2018). Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels. Infrared Physics and Technology, 89, 351–362. https://doi.org/10.1016/j.infrared.2018.01.026
dc.relationKizis, D., & Vichou, A. (2021). Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. 1–26.
dc.relationKumar, Y., Ganpat, C., Baek, C., Min-HO, L., & Junhong, M. (2018). Label-Free Impedance Sensing of Aflatoxin B 1 with Polyaniline Nanofibers/Au Nanoparticle Electrode Array. 1–14. https://doi.org/10.3390/s18051320
dc.relationKumari, P., Gogoi, R., Srinivasa, N., & Shekhar, M. (2021). Characterization of aflatoxigenic Aspergillus flavus associated with aflatoxin B1 (AFB1) production in maize kernel in India. Indian Phytopathology, 74(1), 103–112. https://doi.org/10.1007/s42360-020-00292-1
dc.relationKumsiri, R., & Kanchanaphum, P. (2020). A Comparison of Four Molecular Methods for Detection of Aflatoxin-Producing Aspergillus in Peanut and Dried Shrimp Samples Collected from Local Markets around Pathum Thani Province , Thailand. 2020.
dc.relationKure, C. F., & Skaar, I. (2019). The fungal problem in cheese industry. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2019.07.003
dc.relationLattanzio, V., Ciasca, B., Powers, S., & Visconti, A. (2014). Improved method for the simultaneous determination of aflatoxins, 2 ochratoxin A and Fusarium toxins in cereals and derived products by liquid 3 chromatography - tandem mass spectrometry after multi-toxin 4 immunoaffinity clean up. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2014.05.069
dc.relationLavkor, I. (2019). Molecular Characterization of Aflatoxin Biosynthesis Genes of Aspergillus Flavus from Peanuts Production Area.
dc.relationLavkor, I. (2020). Quantitative Detection of Aflatoxin and Species İ dentification of Aspergillus Section Flavi İ solates from Peanuts using Molecular Approaches. I, 1–5.
dc.relationLei, J., Han, X., Tang, X., Wang, H., & Zhang, Q. (2020). Development of Anti-Idiotypic Nanobody-Phage Based Immuno-Loop-Mediated Isothermal Amplification Assay for Aflatoxins in Peanuts. Toxins, 12(9). https://doi.org/10.3390/toxins12090565
dc.relationLi, X., P., Z., G., Y., Chen, H., X., Pan, S., D., & J., & C., M. (2014). Simultaneous determination of four aflatoxins in walnut kernel using dispersive solid-phase extraction combined with ultra fast liquid chromatography-tandem mass spectrometry. Chin. J. Health Lab. Technol, 24, 2647-2650.
dc.relationLiang Ma, H., wen Wang, J., jun Chen, Y., le Cheng, J., & tian Lai, Z. (2017). Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods. Food Chemistry, 215, 108–115. https://doi.org/10.1016/j.foodchem.2016.07.156
dc.relationLiang, Y., & Zhou, T. (2019). Recent advances of online coupling of sample preparation techniques with ultra high performance liquid chromatography and supercritical fluid chromatography. Journal of Separation Science, 42(1), 226–242. https://doi.org/10.1002/jssc.201800721
dc.relationLilyanna, S., Ng, E. M. W., Moriguchi, S., Chan, S. P., Kokawa, R., Huynh, S. H., Chong, P. C. J., Ng, Y. X., Richards, A. M., Ng, T. W., & Liew, O. W. (2018). Variability in Microplate Surface Properties and Its Impact on ELISA. The Journal of Applied Laboratory Medicine, 2(5), 687–699. https://doi.org/10.1373/jalm.2017.023952
dc.relationLimachi Gutierrez, N. (2021). Optimización del método fluorometrico para la cuantificación de aflatoxina totales (B1, B2, G1 y G2) en castaña. http://repositorio.umsa.bo/xmlui/handle/123456789/26014
dc.relationLiu, D., Li, W., Zhu, C., Li, Y., Shen, X., Li, L., Yan, X., & You, T. (2020). Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC - Trends in Analytical Chemistry, 133. https://doi.org/10.1016/j.trac.2020.115966
dc.relationLiu, D., Zhang, S., Wang, H., Yang, M., Yao, D., & Xie, C. (2018). Versicolorin A is a Potential Indicator of Aflatoxin Contamination in the Granary-Stored Corn. Food Additives Contaminants: Part A, 0(0). https://doi.org/10.1080/19440049.2017.1419579
dc.relationLiu, Q., Li, X., Wu, R., Xiao, X., & Xing, F. (2021). Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains. 125(January). https://doi.org/10.1016/j.foodcont.2021.107957
dc.relationLiu, T., He, J., Yao, W., Jiang, H., & Chen, Q. (2022). Determination of aflatoxin B1 value in corn based on Fourier transform near-infrared spectroscopy: Comparison of optimization effect of characteristic wavelengths. LWT, 164. https://doi.org/10.1016/j.lwt.2022.113657
dc.relationLlorens, P., Pietrzak-Fiećko, R., Moltó, J. C., Mañes, J., & Juan, C. (2022). Development of an Extraction Method of Aflatoxins and Ochratoxin A from Oral, Gastric and Intestinal Phases of Digested Bread by In Vitro Model. Toxins, 14(1). https://doi.org/10.3390/toxins14010038
dc.relationLopera Echavarria, J. D., Ramírez Gómez, C. A., Zuluaga Aristazábal, M. U., & Ortiz Vanegas, J. (2010). El metodo analitico como metodo natural. Nomadas, 1(25), 1–28. http://www.redalyc.org/articulo.oa?id=18112179017
dc.relationLópez, N., & Sandoval, I. (2016). Métodos y técnicas de investigación cuantitativa y cualitativa. http://148.202.167.116:8080/xmlui/handle/123456789/176
dc.relationLu, X., Wang, C., Qian, J., Ren, C., An, K., & Wang, K. (2019). Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Analytica Chimica Acta, 1047, 163–171. https://doi.org/10.1016/j.aca.2018.10.002
dc.relationLuis, J., Rojas, R., Gutiérrez Tolentino, R., Orantes Zebadua, M. A., Cruz, A. M., San, R., Km, F., Ejido, C., Zapata, E., Gutiérrez, T., & Chiapas, M. (2017). Contaminación por micotoxinas de la leche y derivados lácteos Contamination by micotoxins of milk and milk products. Quehacer Científico En Chiapas, 12(1), 2017.
dc.relationLv, X., Xu, X., Miao, T., Zang, X., Geng, C., Li, Y., Cui, B., & Fang, Y. (2020). Aggregation-Induced Electrochemiluminescence Immunosensor Based on 9 , 10-Diphenylanthracene Cubic Nanoparticles for Ultrasensitive Detection of A fl atoxin B 1. https://doi.org/10.1021/acsabm.0c01201
dc.relationM Rafaela, R. (2007). Contaminaciones alimentarias. Offarm, 26(6), 95–100. https://www.elsevier.es/es-revista-offarm-4-articulo-contaminaciones-alimentarias-13107676
dc.relationMagan, N., Hope, R., Cairns, V., & Aldred, D. (2003). Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. European Journal of Plant Pathology, 109(7), 723–730. https://doi.org/10.1023/A:1026082425177/METRICS
dc.relationMaggira, M., Sakaridis, I., Ioannidou, M., & Samouris, G. (2022). Comparative Evaluation of Three Commercial Elisa Kits Used for the Detection of Aflatoxins B1, B2, G1, and G2 in Feedstuffs and Comparison with an HPLC Method. Veterinary Sciences, 9(3). https://doi.org/10.3390/vetsci9030104
dc.relationMahfuz, M., Gazi, A., Hossain, M., Islam, R., Fahim, S. M., & Ahmed, T. (2018a). General and advanced methods for the detection and measurement of aflatoxins and aflatoxin metabolites : a review. Toxin Reviews, 0(0), 1–15. https://doi.org/10.1080/15569543.2018.1514638
dc.relationMahfuz, M., Gazi, A., Hossain, M., Islam, R., Fahim, S. M., & Ahmed, T. (2018b). General and advanced methods for the detection and measurement of aflatoxins and aflatoxin metabolites : a review. Toxin Reviews, 0(0), 1–15. https://doi.org/10.1080/15569543.2018.1514638
dc.relationMalachová, A., Stránská, M., Václavíková, M., Elliott, C. T., Black, C., Meneely, J., Hajšlová, J., Ezekiel, C. N., Schuhmacher, R., & Krska, R. (2018). Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 410(3), 801–825. https://doi.org/10.1007/s00216-017-0750-7
dc.relationMarcela, D., & Salazar, R. (2007). DISEÑO y elaboración de una guía preliminar para la validación de métodos microbiológicos estándar maría andrea ordoñez parra. http://hdl.handle.net/10554/8955
dc.relationMarchi, I., Rudaz, S., & Veuthey, J. L. (2009). Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: A review. Talanta, 78(1), 1–18. https://doi.org/10.1016/j.talanta.2008.11.031
dc.relationMatabaro, E., Ishimwe, N., Uwimbabazi, E., & Lee, B. H. (2017). Current Immunoassay Methods for the Rapid Detection of Aflatoxin in Milk and Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 16(5), 808–820. https://doi.org/10.1111/1541-4337.12287
dc.relationMcNay, G., Eustace, D., Smith, W. E., Faulds, K., & Graham, D. (2011). Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance raman scattering (SERRS): A review of applications. Applied Spectroscopy, 65(8), 825–837. https://doi.org/10.1366/11-06365
dc.relationMedina-Lopez, C., Marin-Garcia, J. A., & Alfalla-Luque, R. (2010). Una propuesta metodológica para la realización de búsquedas sistemáticas de bibliografía (A methodological proposal for the systematic literature review). WPOM-Working Papers on Operations Management, 1(2), 13–30. https://doi.org/10.4995/WPOM.V1I2.786
dc.relationMelgarejo, N. (2019). Efectos, prevención y control de las aflatoxinas que se producen en el pienso de las aves de corral. https://repository.unad.edu.co/handle/10596/28407
dc.relationMiklós, G., Angeli, C., Ambrus, Á., Nagy, A., Kardos, V., Zentai, A., Kerekes, K., Farkas, Z., Jóźwiak, Á., & Bartók, T. (2020). Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01916
dc.relationMinisterio de Salud y protección social. (2013). Resolución número 5296 del 2013.
dc.relationMinisterio de Salud y Protección Social. (2013). Resolución número 2674 del 2013. https://www.funcionpublica.gov.co/documents/418537/604808/1962.pdf/abe38fb4-e74d-4dcc-b812-52776a9787f6
dc.relationMinisterio de Salud y Protección Social. (2013). Resolución Número 4506 De 2013. Ministro de Salud y Protección Social, 1–10. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-4506-de-2013.pdf
dc.relationMissmer, S. A., Suarez, L., Felkner, M., Wang, E., Merrill, A. H., Rothman, K. J., & Hendricks, K. A. (2006). Exposure to fumonisins and the occurence of neutral tube defects along the Texas-Mexico border. Environmental Health Perspectives, 114(2), 237–241. https://doi.org/10.1289/ehp.8221
dc.relationMitema, A., Okoth, S., & Rafudeen, S. M. (2019). The development of a qPCR assay to measure aspergillus flavus biomass in maize and the use of a Biocontrol Strategy to Limit Aflatoxin Production. Toxins, 11(3). https://doi.org/10.3390/toxins11030179
dc.relationMolina, N., Sacheri, K., & Andrade, D. (2019). Identificación morfológica y molecular de hongos aislados de lesiones, en manglares del género Rhizophora, del Parque Histórico Guayaquil. http://repositorio.uees.edu.ec/handle/123456789/3469
dc.relationMorán Barreiro, J. J. (2022). Principales fungicidas químicos para el control del hongo Fusarium verticillioides, que afectan en el cultivo de maíz (Zea mays L.)”. http://dspace.utb.edu.ec/handle/49000/13370
dc.relationMorris, L. (2011). Determinación de aflatoxinas en muestras de maíz (Zea mays) y arroz (Oryza sativa) para consumo humano en cinco departamentos de la Costa Caribe Colombiana mediante cromatografía de alta eficiencia durante seis meses en 2011. https://repositorio.unal.edu.co/handle/unal/8318
dc.relationNajafi, A., Aminian, H., & Etebarian, H. R. (2018). PCR-restriction fragment length analysis of aflR gene for detection of Aspergillus flavus and Aspergillus parasiticus in Feeds in Iran.
dc.relationNcube, J., & Maphosa, M. (2020). Current state of knowledge on groundnut aflatoxins and their management from a plant breeding perspective: Lessons for Africa. Scientific African, 7, e00264. https://doi.org/10.1016/j.sciaf.2020.e00264
dc.relationNeme, K., & Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control, 78, 412–425. https://doi.org/10.1016/J.FOODCONT.2017.03.012
dc.relationNiessen, L., Bechtner, J., Fodil, S., Taniwaki, M. H., & Vogel, R. F. (2018). LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. International Journal of Food Microbiology, 266, 241–250. https://doi.org/10.1016/j.ijfoodmicro.2017.12.013
dc.relationNiknejad, F., Escrivá, L., Rad, K. B. A., Khoshnia, M., Barba, F. J., & Berrada, H. (2021). Biomonitoring of Multiple Mycotoxins in Urine by GC–MS/MS: A Pilot Study on Patients with Esophageal Cancer in Golestan Province, Northeastern Iran. Toxins, 13(4). https://doi.org/10.3390/TOXINS13040243
dc.relationNikolić, M., Savić, I., Nikolić, A., Jauković, M., Kandić, V., Stevanović, M., & Stanković, S. (2021). Toxigenic species Aspergillus parasiticus originating from Maize Kernels grown in Serbia. Toxins, 13(12). https://doi.org/10.3390/toxins13120847
dc.relationOgunade, I. M., Martinez-Tuppia, C., Queiroz, O. C. M., Jiang, Y., Drouin, P., Wu, F., Vyas, D., & Adesogan, A. T. (2018). Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. Journal of Dairy Science, 101(5), 4034–4059. https://doi.org/10.3168/jds.2017-13788
dc.relationOkuda, T., Klich, M. A., Seifert, K. A., & Ando, K. (2000). Media and incubation effects on morphological characteristics of Penicillium and Aspergillus. Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classific, 83–99.
dc.relationOLVERA, E. M. (2017). “Las Micotoxinas en Ganado Lechero y los Adsorbentes Utilizados para su Control.” http://ri-ng.uaq.mx/handle/123456789/1402
dc.relationOmar, S. S., Haddad, M. A., & Parisi, S. (2020). Validation of HPLC and Enzyme- Linked Immunosorbent Assay ( ELISA ) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples.
dc.relationOng, P., Tung, I. C., Chiu, C. F., Tsai, I. L., Shih, H. C., Chen, S., & Chuang, Y. K. (2022). Determination of aflatoxin B1 level in rice (Oryza sativa L.) through near-infrared spectroscopy and an improved simulated annealing variable selection method. Food Control, 136, 108886. https://doi.org/10.1016/J.FOODCONT.2022.108886
dc.relationOrellana, E. (2012). Micotoxinas y sus efectos en los hatos bovinos. Universidad de Cuenca, facultad de Ciencias Agropecuarias, escuela de medicina veterinaria, 1–66. Ornelas Aguirre, J. M., & Fimbres Morales, A. (2015). Aflatoxinas y su Asociación con el Desarrollo de Carcinoma Hepatocelular. Cimel, 20(1), 33–39. https://www.cimel.felsocem.net/index.php/CIMEL/article/view/579/333
dc.relationOrobchenko, O., Kurbatska, O., Paliy, A., Palii, A., & Orobchenko, O. (2023). Toxicological evaluation of feed contaminated with mycotoxins using a luminescent microorganism: Photobacterium phosphoreum. https://doi.org/10.46419/vs.54.2.7
dc.relationOrtega, S. F., Siciliano, I., Prencipe, S., Gullino, M. L., & Spadaro, D. (2020). for the Detection of Aflatoxigenic Strains of Aspergillus flavus and A . parasiticus in Hazelnut. 1, 1–27.
dc.relationPacheco, G. (2020). Micotoxinas en alimentación animal. Universidad Zaragoza, 1–45.
dc.relationPanda, D., Dash, B. P., Manickam, S., & Boczkaj, G. (2022). Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. Mass Spectrometry Reviews, 41(5), 766–803. https://doi.org/10.1002/mas.21689
dc.relationParsa, S. F., Vafajoo, A., Rostami, A., Salarian, R., Rabiee, M., Rabiee, N., Rabiee, G., Tahriri, M., Yadegari, A., Vashaee, D., Tayebi, L., & Hamblin, M. R. (2018). Early diagnosis of disease using microbead array technology: A review. Analytica Chimica Acta, 1032, 1–17. https://doi.org/10.1016/j.aca.2018.05.011
dc.relationParween, W., & Das, A. K. (2017). Journal of clinical and experimental hepatology predictors of 1-month and 3-months hospital readmissions in xeroderma pigmentosum group d polymorphism in association with aflatoxin b1 exposure in chronic diagnosis of spontaneous bacterial. Journal of Clinical and Experimental Hepatology, 7(July), S53–S54. https://doi.org/10.1016/j.jceh.2017.05.101
dc.relationPatil, U. S., King, S., Holleran, S., White, K., Stephenson, C., & Reuther, J. (2019). Identifying challenges and risks associated with the analysis of major mycotoxins in feed and botanicals. Journal of AOAC International, 102(6), 1689–1694. https://doi.org/10.5740/jaoacint.19-0105
dc.relationPérez, B., & Muñiz, A. (2022). Analytica Chimica Acta Electrochemical biosensors based on nanomaterials for aflatoxins detection : A review ( 2015 – 2021 ). 1212(November 2021). https://doi.org/10.1016/j.aca.2022.339658
dc.relationPilařová, V., Plachká, K., Khalikova, M. A., Svec, F., & Nováková, L. (2019). Recent developments in supercritical fluid chromatography – mass spectrometry: Is it a viable option for analysis of complex samples? TrAC - Trends in Analytical Chemistry, 112, 212–225. https://doi.org/10.1016/j.trac.2018.12.023
dc.relationPimpitak, U., Rengpipat, S., Phutong, S., Buakeaw, A., & Komolpis, K. (2020). Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. International Journal of Dairy Technology, 73(4), 695–705. https://doi.org/10.1111/1471-0307.12728
dc.relationPradhan, S., & Ananthanarayan, L. (2020). Standardization and validation of a high-performance thin-layer chromatography method for the quantification of aflatoxin B1 and its application in surveillance of contamination level in marketed food commodities from the Mumbai region. Journal of Planar Chromatography - Modern TLC, 33(6), 617–630. https://doi.org/10.1007/S00764-020-00073-6/METRICS
dc.relationPrado, E. (2018). Revisión sobre las aflatoxinas en Avicultura. https://repository.udca.edu.co/bitstream/handle/11158/1078/Revisi%F3n sobre las aflatoxinas en Avicultura final.pdf?sequence=1
dc.relationQu, L. L., Jia, Q., Liu, C., Wang, W., Duan, L., Yang, G., Han, C. Q., & Li, H. (2018). Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. Journal of Chromatography A, 1579, 115–120. https://doi.org/10.1016/j.chroma.2018.10.024
dc.relationRalf, J., Xiaomin, L., Xiuqin, L., Zhen, G., Garrido, B., Ilker, U., Daireaux, A., Choteau, T., Gustavo, M., Westwood, S., Hongmei, L., & Wielgosz, R. (2019). The BIPM Mycotoxin Metrology Capacity Building and Knowledge Transfer Program: Accurate Characterization of a Pure Aflatoxin B 1 Material to Avoid Calibration Errors. 1, 1740–1748.
dc.relationRamírez, S., & Meneses, E. (2018). Incidencia de mohos toxigénicos y aflatoxinas en alimento para ganado y leche proveniente de cuencas lecheras del Valle del Mezquital, Hidalgo. Universidad Politécnica Salesiana. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/2169
dc.relationRamos, A. J., Marín, S., Molino, F., Vila, P., & Sanchis, V. (2020). Las micotoxinas: el enemigo silencioso. Arbor, 196(795), 540. http://arbor.revistas.csic.es/index.php/arbor/article/view/2354
dc.relationRan, C., Chen, D., Ma, H., & Jiang, Y. (2017). Graphene oxide adsorbent based dispersive solid phase extraction coupled with multi-pretreatment clean-up for analysis of trace aflatoxins in traditional proprietary Chinese medicines. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1044–1045, 120–126. https://doi.org/10.1016/j.jchromb.2017.01.001
dc.relationRea, W. J. (2018). A Large Case-series of Successful Treatment of Patients Exposed to Mold and Mycotoxin. Clinical Therapeutics, 40(6), 889–893. https://doi.org/10.1016/j.clinthera.2018.05.003
dc.relationRebaza, C. (2021). Detección de aflatoxina B1 en Granos de kiwicha mediante nanosensores aptaméricos y remediación fotoquímica con rayos ultravioleta. Universidad Nacional de Trujillo.
dc.relationRen, X., Zhang, Q., Wu, W., Yan, T., Tang, X., Yu, L., & Li, P. (2019). Anti-idiotypic nanobody-phage display-mediated real-time immuno-PCR for sensitive, simultaneous and quantitative detection of total aflatoxins and zeara_lenone in grains. https://doi.org/10.1016/j.foodchem.2019.05.186
dc.relationRequena, F., Saume, E., & León, A. (2005). Micotoxinas: Riesgos y prevención. Zootecnia Tropical, 23(4), 393–410. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-72692005000400005&lng=es&nrm=iso&tlng=es
dc.relationRiahi, I., Pérez-Vendrell, A. M., Ramos, A. J., Marquis, V., & Brufau, J. (2017). Effect of aflatoxin B 1 at different dietary levels in broiler chickens.
dc.relationRica, C., Salvador, E., Nicaragua, H., & Kopper Gloria Calderón Sheryl Schneider Wilfredo Domínguez Guillermo Gutiérrez, G. (2009). Enfermedades transmitidas por alimentos y su impacto socioeconómico Estudios de caso en Informe técnico sobre ingeniería agrícola y alimentaria por.
dc.relationRichter, P. (2017). Validación de métodos analíticoS. https://d1wqtxts1xzle7.cloudfront.net/51181628/VALIDACION_DE_METODOS_ANALITICOS-libre.pdf?1483543124=&response-content-disposition=inline%3B+filename%3DVALIDACION_DE_METODOS_ANALITICOS.pdf&Expires=1672786764&Signature=Vw4OCDatA6PIux2NGLcx2Br1bOxQbiqLqL7Se
dc.relationRíos Barragán, M. L., González Sánchez, J. F., Gutiérrez Tolentino, R., Escobar Medina, A. C., Pérez González, J. J., Vega y León, S., Ríos Barragán, M. L., González Sánchez, J. F., Gutiérrez Tolentino, R., Escobar Medina, A. C., Pérez González, J. J., & Vega y León, S. (2021). Determinación de aflatoxinas en especias, ingredientes y mezclas de especias usados en la formulación de productos cárnicos comercializados en la Ciudad de México. Revista Mexicana de Ciencias Pecuarias, 12(3), 944–957. https://doi.org/10.22319/RMCP.V12I3.5530
dc.relationRodrigues, I., & Naehrer, K. (2012). A Three-Year Survey on the Worldwide Occurrence of Mycotoxins in Feedstuffs and Feed. Toxins, 4(9), 663. https://doi.org/10.3390/TOXINS4090663
dc.relationRodrigues, P., Soares, C., Kozakiewicz, Z., Paterson, R. R. M., & Lima, N. (1965). Identification and characterization of Aspergillus flavus and aflatoxins. JAMA: The Journal of the American Medical Association, 192(4), 322. https://doi.org/10.1001/jama.1965.03080170050015
dc.relationRojas-Contreras, L. O., & Wilches -Flórez, M. A. (2009). Infantil Comercializados en la ciudad de Pamplona, Norte de Santander Rojas Contreras Olga Liliana Wilches Flórez Angela María Universidad de Pamplona , Facultad de Ciencias Básicas Departamento de Microbiología Grupo de Investigación en Microbio. BISTUA: Revista Facultad de Ciencias Básicas, 7(1), 1–11. http://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/general/pag_contenido/publicaciones/bistua_revista_ciencias_basica/2009/23022010/art_15.pdf
dc.relationRojas-Crotte, I. R. (2011). Elementos para el diseño de técnicas de investigación: Una propuesta de definiciones y procedimientos de la investigación científica. Tiempo de Educar, 12(24), 277–297. http://www.redalyc.org/pdf/311/31121089006.pdf
dc.relationRojas Jaimes, J., Chacón Cruzado, M., Castañeda Peláez, L., Díaz Tello, A., Rojas Jaimes, J., Chacón Cruzado, M., Castañeda Peláez, L., & Díaz Tello, A. (2021). Cuantificación de aflatoxinas carcinogénicas en alimentos no procesados y su implicación para el consumo en Lima, Perú. Nutrición Hospitalaria, 38(1), 146–151. https://doi.org/10.20960/NH.03240
dc.relationRudramurthy, S. M., Paul, R. A., Chakrabarti, A., Mouton, J. W., & Meis, J. F. (2019). Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. https://doi.org/10.3390/jof5030055
dc.relationSaad-Hussein, A., Soliman, K. M., & Moubarz, G. (2022). 18S rRNA gene sequencing for environmental aflatoxigenic fungi and risk of hepatic carcinoma among exposed workers. Https://Doi.Org/10.1080/10934529.2022.2046428, 57(3), 174–182. https://doi.org/10.1080/10934529.2022.2046428
dc.relationSacramento, T. R. (2016). Importância da Contaminação de Alimentos por Aflatoxinas para a Incidência de Câncer Hepático. RECEN - Revista Ciências Exatas e Naturais, 18(1), 141–169.
dc.relationSadhasivam, S., Britzi, M., Zakin, V., Kostyukovsky, M., Trostanetsky, A., Quinn, E., & Sionov, E. (2017). Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins, 9(10), 1–17. https://doi.org/10.3390/toxins9100302
dc.relationSaldaña, M., León, F. J., Acevedo, C. A., & Agualimpia, B. E. (2023). Advances in methodologies for the detection of aflatoxins in grains in storage - Mendeley Data. https://doi.org/10.17632/45hrfnnpzr.2
dc.relationSaldaña, M., León, F. J., Acevedo, C. A., & Valderrama, B. E. (2023, January 15). Análisis de redes bibliográficas sobre aflatoxinas con el software VOSviewer de publicaciones en la base de datos SCOPUS. https://doi.org/10.13140/RG.2.2.20722.38084/1
dc.relationSamaniego, M. R., Espín, H. S., Villavicencio, J., Ortiz, B., & Zambrano, J. L. (2018). Evaluación De La Contaminación Por Aflatoxinas B 1 , B 2 , G 1 Y G 2 En Maíz Amarillo Duro. Revista Espamciencia, 9(1), 13–21.
dc.relationSanabria, N., & López, A. (2017). Métodos Para La Determinación De Aflatoxinas En Alimentos. Revista Agrollanía, 14, 1690–8066. http://150.187.216.84/index.php/agrollania/article/view/550
dc.relationSánches, M. (2019). Validación de un método para cuantificar la aflatoxina M1 , en leche en polvo industrializada para lactantes humanos por cromatografía de líquidos. Instituto de Biología UNAM, 1–58.
dc.relationSánchez, E. M., & Diaz, G. J. (2019). Frequency and levels of aflatoxin M1 in urine of children in Bogota, Colombia. Mycotoxin Research, 35(3), 271–278. https://doi.org/10.1007/s12550-019-00355-x
dc.relationSantos, K. A., Klein, E. J., da Silva, C., da Silva, E. A., & Cardozo-Filho, L. (2019). Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics. Journal of Supercritical Fluids, 150, 30–39. https://doi.org/10.1016/j.supflu.2019.04.005
dc.relationSchoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020. https://doi.org/10.1093/DATABASE/BAAA062
dc.relationSchuler, A. R. P., & Gómez, Ó. M. B. (2018). Aflatoxinas. Una revision. Perspectivas En Nutrición Humana, 0(4), 65–85. https://revistas.udea.edu.co/index.php/nutricion/article/view/336534
dc.relationSciortino, C. V. (2017). Atlas of Clinically Important Fungi. Atlas of Clinically Important Fungi. https://doi.org/10.1002/9781119069720
dc.relationSegal, B. H. (1956). Aspergillosis. Pediatrics, 17(6), 897–924. https://doi.org/10.1542/peds.17.6.897
dc.relationSemong, O., & Batlokwa, B. S. (2017). Development of an aflatoxin B1 specific molecularly imprinted solid phase extraction sorbent for the selective pre-concentration of toxic aflatoxin B1 from child weaning food, Tsabana. Molecular Imprinting, 5(1), 1–15. https://doi.org/10.1515/molim-2017-0001
dc.relationSharma, K. K., Pothana, A., Prasad, K., Shah, D., Kaur, J., Sudini, K., & Bhatnagar-mathur, P. (2017). Peanuts that keep aflatoxin at bay : A threshold that matters. https://doi.org/10.1111/ijlh.12426
dc.relationSheeja, T. E., Payatatti, I., Kumar, V., Giridhari, A., Minoo, D., & Rajesh, M. K. (2021). Amplified Fragment Length Polymorphism: Applications and Recent Developments (Vol. 2222).
dc.relationSheikha, A. F. El. (2015). Advances in food technology and nutritional sciences New Strategies for Tracing Foodstuffs : Biological Barcodes Utilising PCR-DGGE. 1–7. https://doi.org/10.17140/AFTN-SOJ-SE-1-101
dc.relationShekhar, M., Singh, N., Kumar, S., & Kiran, R. (2017). Role of mould occurrence in aflatoxin build-up and variability of Aspergillus flavus isolates from maize grains across India. 9(2), 171–178. https://doi.org/10.3920/QAS2015.0720
dc.relationShen, F., Wu, Q., Liu, P., Jiang, X., Fang, Y., & Cao, C. (2018). Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose. Food Control, 93, 1–8. https://doi.org/10.1016/j.foodcont.2018.05.039
dc.relationSherma, J., & Rabel, F. (2020). Review of advances in planar chromatography-mass spectrometry published in the period 2015–2019. Journal of Liquid Chromatography and Related Technologies, 43(11–12), 394–412. https://doi.org/10.1080/10826076.2020.1725561
dc.relationSibanda, L., McCallum, K., Plotan, M., Webb, S., Snodgras, B., Muenks, Q., Porter, J., & Fitzgerald, P. (2022). Interlaboratory collaboration to determine the performance of the Randox food diagnostics biochip array technology for the simultaneous quantitative detection of seven mycotoxins in feed. World Mycotoxin Journal, 15(3), 241–250. https://doi.org/10.3920/WMJ2021.2696
dc.relationSoares, K. L., Cerqueira, M. B. R., Caldas, S. S., & Primel, E. G. (2017). Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge. Chemosphere, 182, 547–554. https://doi.org/10.1016/j.chemosphere.2017.05.062
dc.relationSomsubsin, S., Seebunrueng, K., Boonchiangma, S., & Srijaranai, S. (2017). Author ’ s Accepted Manuscript. Talanta. https://doi.org/10.1016/j.talanta.2017.08.028
dc.relationSong, S., Liu, N., Zhao, Z., Ediage, E. N., Wu, S., Sun, C., Saeger, S. De, & Wu, A. (2014). Multiplex Lateral Flow Immunoassay for Mycotoxin Determination.
dc.relationSoriano, J. (2007). Micotoxinas en alimentos - Google Libros. https://books.google.es/books?hl=es&lr=&id=wgRVcFvk--IC&oi=fnd&pg=PR23&dq=micotoxinas+en+alimentos&ots=IU3TVX9oJ4&sig=PAd29ABXlCy0GCzyaT3x3AlJOCc#v=onepage&q=micotoxinas en alimentos&f=false
dc.relationSosa, F. (2017). Avances científicos para potenciar la agroindustria de oleaginosas agroindustria de oleaginosas. Revista Universidad EAFIT, 52, 170. http://hdl.handle.net/10784/16862
dc.relationSu, W. H., & Sun, D. W. (2018). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104–122. https://doi.org/10.1111/1541-4337.12314
dc.relationSugita, C., Makimura, K., Uchida, K., Yamaguchi, H., & Nagai, A. (2004). PCR identification system for the genus Aspergillus and three major pathogenic species: Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. Medical Mycology, 42(5), 433–437. https://doi.org/10.1080/13693780310001656786
dc.relationSun, L., Li, Y., Wang, H., & Zhao, Q. (2019). An aptamer assay for aflatoxin B1 detection using Mg2+ mediated free zone capillary electrophoresis coupled with laser induced fluorescence. Talanta, 204, 182–188. https://doi.org/10.1016/j.talanta.2019.05.069
dc.relationSweany, R. R., Breunig, M., Opoku, J., Clay, K., Spatafora, J. W., Drott, M. T., Baldwin, T. T., & Fountain, J. C. (2022). Why Do Plant-Pathogenic Fungi Produce Mycotoxins? Potential Roles for Mycotoxins in the Plant Ecosystem. Phytopathology, 112(10), 2044–2051. https://doi.org/10.1094/PHYTO-02-22-0053-SYM
dc.relationTai, B., Chang, J., Liu, Y., & Xing, F. (2020). Recent progress of the effect of environmental factors on Aspergillus flavus growth and aflatoxins production on foods. Food Quality and Safety, 4(1), 21–28. https://doi.org/10.1093/fqsafe/fyz040
dc.relationTang, X., Li, P., Zhang, Q., Zhang, Z., Zhang, W., & Jiang, J. (2017). Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Analytical Chemistry, 89(21), 11520–11528. https://doi.org/10.1021/acs.analchem.7b02794
dc.relationTang, Y., Tang, D., Zhang, J., & Tang, D. (2018). Novel quartz crystal microbalance immunodetection of a fl atoxin B 1 coupling cargo-encapsulated liposome with indicator-triggered displacement assay. Analytica Chimica Acta, 1–8. https://doi.org/10.1016/j.aca.2018.05.027
dc.relationThathana, M. G., Murage, H., Luther, A., & Abia, K. (2017). Morphological Characterization and Determination of Aflatoxin-Production Potentials of Aspergillus flavus Isolated from Maize and Soil in Kenya. https://doi.org/10.3390/agriculture7100080
dc.relationTinoco Alvear, M. (2013). Estudio de la presencia de aflatoxinas en cereales para niños expendidos al granel en mercados de la ciudad de Cuenca. http://dspace.uazuay.edu.ec/handle/datos/2528
dc.relationTiwari, R., Kumar, A., Shanker, K., Khare, P., Dhobi, M., Kalaiselvan, V., & Raghuvanshi, R. S. (2022). Quality control assessment of Aegle marmelos (L.) Correa: A combined approach using high-performance thin-layer chromatography, heavy metal, pesticide and aflatoxin analysis. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100432. https://doi.org/10.1016/J.JARMAP.2022.100432
dc.relationTozcano Martínez, L. J., Juárez Atonal, R., Soley Berenice, G. N., Garrido Bazán, V., & Bibbins Martínez, M. (2021). Las Aflatoxinas, ¿Un Peligro Silencioso? Frontera Biotecnológica.
dc.relationTreviño-castellano, M., Rodríguez-nóvoa, S., Llovo-taboada, J., García-zabarte, Á., García-riestra, C., José, B., Microbiología, S. De, Hospitalario, C., Santiago, U. De, Chus, D. C., & España, A. C. (2003). Uso combinado de amplificación aleatoria de polimorfismo del ADN ( RAPD ) y reacción en cadena de la polimerasa ( touchdown PCR ) en el estudio epidemiológico de Aspergillus fumigatus. 21(9), 472–476.
dc.relationTreviño Espinosa, R. S. (2019). Caracterización y efectividad de adsorbentes de aflatoxinas para inclusión en dietas animales.
dc.relationTrigg, R. M., Martinson, L. J., Parpart-Li, S., & Shaw, J. A. (2018). Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature. Heliyon, 4(7), e00699. https://doi.org/10.1016/j.heliyon.2018.e00699
dc.relationTunubala Cardona, L., Orejuela Cabre, J., & Rojas Trejos, C. A. (2018). Gestión de inventario y almacenamiento de materias primas en el sector de alimentos concentrados Warehousing and Inventory Management for Raw Materials in the Concentrated Food Sector. https://doi.org/10.24050/reia.v15i30.1066
dc.relationUka, V., Moore, G. G., Arroyo-Manzanares, N., Nebija, D., De Saeger, S., & Di Mavungu, J. D. (2019). Secondary Metabolite Dereplication and Phylogenetic Analysis Identify Various Emerging Mycotoxins and Reveal the High Intra-Species Diversity in Aspergillus flavus. Frontiers in Microbiology, 10(APR), 667. https://doi.org/10.3389/FMICB.2019.00667/BIBTEX
dc.relationÜlger, T. G., Uçar, A., Çakıroğlu, F. P., & Yilmaz, S. (2020). Genotoxic effects of mycotoxins. Toxicon, 185, 104–113. https://doi.org/10.1016/J.TOXICON.2020.07.004
dc.relationUr Rahman, H., Yue, X., Yu, Q., Zhang, W., Zhang, Q., & Li, P. (2020). Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices. World Mycotoxin Journal, 13(2), 139–150. https://doi.org/10.3920/WMJ2019.2455
dc.relationUrrego, J., & Díaz, G. (2006). Aflatoxinas: Mecanismos De Toxicidad En La Etiología De Cáncer Hepático Celular. Revista Facultad Medicina Universidad Nacional Colombia, 54(2), 9.
dc.relationValitutti, F., De Santis, B., Trovato, C. M., Montuori, M., Gatti, S., Oliva, S., Brera, C., & Catassi, C. (2018). Assessment of mycotoxin exposure in breastfeeding mothers with celiac disease. Nutrients, 10(3), 1–9. https://doi.org/10.3390/nu10030336
dc.relationVallejo, D., & Posada, D. (2018). Micotoxinas en materias primas para alimentación animal en Colombia “ Revisión sistemática .” 30. http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/10176/T636.085 V182.pdf;jsessionid=5AFCFC0F6B85EF0F5C154584442855F0?sequence=1
dc.relationVaz, A., Cabral Silva, A. C., Rodrigues, P., & Venâncio, A. (2020). Detection methods for aflatoxin m1 in dairy products. Microorganisms, 8(2), 1–16. https://doi.org/10.3390/microorganisms8020246
dc.relationVenkataramana, M., Chandranayaka, S., Prakash, H. S., & Niranjana, S. R. (2014). Mycotoxins Relevant to Biowarfare and Their Detection. 1–21. https://doi.org/10.1007/978-94-007-6645-7_32-1
dc.relationVon Ruden, S., Slusarenko, N., & Webster, D. (2022). A Case Report of Hypertriglyceridemia-Associated Acute Pancreatitis Following Use of Brazil Nut Weight-Loss Supplement. Journal of Pharmacy Practice, 089719002110150. https://doi.org/10.1177/08971900211015040
dc.relationWang, A., Liu, J., Yang, J., & Yang, L. (2023). Aptamer affinity-based microextraction in-line coupled to capillary electrophoresis mass spectrometry using a porous layer/nanoparticle -modified open tubular column. Analytica Chimica Acta, 1239, 340750. https://doi.org/10.1016/J.ACA.2022.340750
dc.relationWang, B., Deng, J., & Jiang, H. (2022). Markov Transition Field Combined with Convolutional Neural Network Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Determination of Aflatoxin B1 in Maize. Foods, 11(15), 1–12. https://doi.org/10.3390/foods11152210
dc.relationWang, B., Shen, F., He, X., Fang, Y., Hu, Q., & Liu, X. (2023). Simultaneous detection of Aspergillus moulds and aflatoxin B1 contamination in rice by laser induced fluorescence spectroscopy. Food Control, 145, 109485. https://doi.org/10.1016/J.FOODCONT.2022.109485
dc.relationWang, L., Chen, Z. W., Ma, T. Z., Qing, J., Liu, F., Xu, Z., Jiao, Y., Luo, S. H., Cheng, Y. H., & Ding, L. (2022). A novel magnetic metal–organic framework absorbent for rapid detection of aflatoxins B1B2G1G2 in rice by HPLC-MS/MS. Analytical Methods, 14(25), 2522–2530. https://doi.org/10.1039/D2AY00167E
dc.relationWang, L., Wu, J., Liu, Z., Shi, Y., Liu, J., & Xu, X. (2019). Aflatoxin B 1 Degradation and Detoxification by Escherichia coli CG1061 Isolated From Chicken Cecum. 9(January), 1–9. https://doi.org/10.3389/fphar.2018.01548
dc.relationWang, Q., Yang, Q., & Wu, W. (2020). Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00408
dc.relationWang, X., Zhao, Y., Qi, X., Zhao, T., Wang, X., Ma, F., Zhang, L., Zhang, Q., & Li, P. (2022). Quantitative analysis of metabolites in the aflatoxin biosynthesis pathway for early warning of aflatoxin contamination by UHPLC-HRMS combined with QAMS. Journal of Hazardous Materials, 431, 128531. https://doi.org/10.1016/J.JHAZMAT.2022.128531
dc.relationWang, Y., Ning, G., Bi, H., Wu, Y., Liu, G., & Zhao, Y. (2018). A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochimica Acta, 285, 120–127. https://doi.org/10.1016/j.electacta.2018.07.195
dc.relationWei, D., Pan, A., Zhang, C., Guo, M., Lou, C., Zhang, J., Wu, H., & Wang, X. (2023). Fast extraction of aflatoxins, ochratoxins and enniatins from maize with magnetic covalent organic framework prior to HPLC-MS/MS detection. Food Chemistry, 404, 134464. https://doi.org/10.1016/J.FOODCHEM.2022.134464
dc.relationWeigel, M. (2007). Evaluación de la Contaminación por aflatoxina m1 en leche cruda y cabeza UHT.
dc.relationWu, D., Liu, P., Teng, Y., Peng, L., Deng, W., & Jia, Y. (2022). Wash-free electrochemical aptasensor for the detection of aflatoxins by the signal amplification of ferrocene-capped gold nanoparticles. International Journal of Electrochemical Science, 17, 1–9. https://doi.org/10.20964/2022.09.33
dc.relationWu, Q., Xie, L., & Xu, H. (2018). Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chemistry, 252, 228–242. https://doi.org/10.1016/j.foodchem.2018.01.076
dc.relationWu, Q., & Xu, H. (2019). Application of multiplexing fiber optic laser induced fluorescence spectroscopy for detection of aflatoxin B 1 contaminated pistachio kernels. Food Chemistry, 290, 24–31. https://doi.org/10.1016/j.foodchem.2019.03.079
dc.relationWu, Q., & Xu, H. (2020). Design and development of an on-line fluorescence spectroscopy system for detection of aflatoxin in pistachio nuts. Postharvest Biology and Technology, 159(September 2019), 111016. https://doi.org/10.1016/j.postharvbio.2019.111016
dc.relationWu, Q., Xu, J., & Xu, H. (2019). Discrimination of aflatoxin B 1 contaminated pistachio kernels using laser induced fluorescence spectroscopy. Biosystems Engineering, 179, 22–34. https://doi.org/10.1016/j.biosystemseng.2018.12.009
dc.relationXia, M., Yang, X., Jiao, T., Oyama, M., Chen, Q., & Chen, X. (2022). Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples. Food Chemistry, 381, 132276. https://doi.org/10.1016/J.FOODCHEM.2022.132276
dc.relationXia, X., Wang, H., Deng, S., Deng, R., Dong, Y., & He, Q. (2018). Dual-terminal stemmed aptamer beacon for label-free detection of aflatoxin B1 in broad bean paste and peanut oil via aggregation-induced emission Dual-terminal stemmed aptamer beacon for label-free detection of aflatoxin. https://doi.org/10.1021/acs.jafc.8b05217
dc.relationXiao, M.-W., Bai, X.-L., Liu, Y.-M., Yang, L., & Liao, X. (2018). Simultaneous determination of trace Aflatoxin B1 and Ochratoxin A by aptamer-based microchip capillary electrophoresis in food samples. Journal of Chromatography A, 1569, 222–228. https://doi.org/10.1016/j.chroma.2018.07.051
dc.relationXiao, Q., & Xu, C. (2020). Trends in Analytical Chemistry Research progress on chemiluminescence immunoassay combined with novel technologies. Trends in Analytical Chemistry, 124(52), 115780. https://doi.org/10.1016/j.trac.2019.115780
dc.relationXing, F., Wang, L., Liu, X., Selvaraj, J. N., Wang, Y., Zhao, Y., & Liu, Y. (2017). Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus. International Journal of Food Microbiology, 256, 1–10. https://doi.org/10.1016/j.ijfoodmicro.2017.05.013
dc.relationXiong, Y., Pei, K., Wu, Y., Duan, H., Lai, W., & Xiong, Y. (2018). Plasmonic ELISA based on enzyme-assisted etching of Au nanorods for the highly sensitive detection of aflatoxin B1 in corn samples. Sensors and Actuators, B: Chemical, 267, 320–327. https://doi.org/10.1016/j.snb.2018.04.027
dc.relationXiong, Y., Pei, K., Wu, Y., & Xiong, Y. (2017). Colorimetric ELISA based on glucose oxidase-regulated the color of acid e base indicator for sensitive detection of a fl atoxin B 1 in corn samples. Food Control, 78, 317–323. https://doi.org/10.1016/j.foodcont.2017.03.002
dc.relationYadav, N., Singh, S., Kumar, A., & Singh, J. (2021). An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food and Chemical Toxicology, 152(March), 112201. https://doi.org/10.1016/j.fct.2021.112201
dc.relationYan, X., & Persaud, K. C. (2019). The Optimization of a Lateral Flow Immunoassay for Detection of Aflatoxin B1 in Potable Water Samples. IEEE Sensors Journal, 19(2), 404–412. https://doi.org/10.1109/JSEN.2018.2878449
dc.relationYao, W., Liu, R., Xu, Z., Zhang, Y., Deng, Y., & Guo, H. (2022). Rapid Determination of Aflatoxin B1Contamination in Peanut Oil by Fourier Transform Near-Infrared Spectroscopy. Journal of Spectroscopy, 2022. https://doi.org/10.1155/2022/9223424
dc.relationYard, E. E., Daniel, J. H., Lewis, L. S., Rybak, M. E., Paliakov, E. M., Kim, A. A., Montgomery, J. M., Bunnell, R., Abudo, M. U., Akhwale, W., Breiman, R. F., & Sharif, S. K. (2013). Human aflatoxin exposure in Kenya, 2007: A cross-sectional study. Food Additives and Contaminants - Part A, 30(7), 1322–1331. https://doi.org/10.1080/19440049.2013.789558
dc.relationYaseen, S., & Hanano, A. (2022). Quantitative PCR (qPCR) Reveals that the Aflatoxin-Free Pistachio Samples Can Be Potentially Contaminated with Fungal Materials. Food Analytical Methods, 15(10), 2703–2711. https://doi.org/10.1007/S12161-022-02327-X/METRICS
dc.relationYeh, K. B., Wood, H., Scullion, M., Russell, J. A., Parker, K., Gnade, B. T., Jones, A. R., Whittier, C., & Mereish, K. (2019). Molecular Detection of Biological Agents in the Field: Then and Now. MSphere, 4(6). https://doi.org/10.1128/msphere.00695-19
dc.relationYoon, B. R., Hong, S. Y., Cho, S. M., Lee, K. R., Kim, M., & Chung, S. H. (2016). Aflatoxin M1 levels in dairy products from South Korea determined by high performance liquid chromatography with fluorescence detection. Journal of Food and Nutrition Research, 55(2), 171–180.
dc.relationYuan, Q., Yang, P., Id, A. W., Zuo, D., & He, W. (2018). Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China. 1–14. https://doi.org/10.3390/toxins16050171
dc.relationZhan, S., Hu, J., Li, Y., Huang, X., & Xiong, Y. (2020). Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B 1 in corn samples. August. https://doi.org/10.1016/j.foodchem.2020.128327
dc.relationZhang, K., & Banerjee, K. (2020). A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins, 12(9). https://doi.org/10.3390/toxins12090539
dc.relationZhang, L., Dou, X., Kong, W., Liu, C., Han, X., & Yang, M. (2017). Assessment of critical points and development of a practical strategy to extend the applicable scope of immunoaffinity column cleanup for aflatoxin detection in medicinal herbs. Journal of Chromatography A, 1483, 56–63. https://doi.org/10.1016/j.chroma.2016.12.079
dc.relationZhang, X., Li, C., Wang, W., Xue, J., Huang, Y., Yang, X., Tan, B., Zhou, X., Shao, C., Ding, S., & Qiu, J. (2016). A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B 1 in corn using single-walled carbon nanotubes / chitosan. FOOD CHEMISTRY, 192, 197–202. https://doi.org/10.1016/j.foodchem.2015.06.044
dc.relationZhang, X., Song, M., Yu, X., Wang, Z., Ke, Y., Jiang, H., Li, J., Shen, J., & Wen, K. (2017). Beijing Advanced Innovation Center for Food Nutrition and Human Health , College of Veterinary. Food Control. https://doi.org/10.1016/j.foodcont.2017.02.049
dc.relationZhang, Y., Li, M., Cui, Y., Hong, X., & Du, D. (2018). Using of Tyramine Signal Amplification to Improve the Sensitivity of ELISA for Aflatoxin B1 in Edible Oil Samples. Food Analytical Methods, 11(9), 2553–2560. https://doi.org/10.1007/s12161-018-1235-9
dc.relationZhang, Z., Tang, X., Wang, D., Zhang, Q., Li, P., & Ding, X. (2015). Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay. PLoS ONE, 10(4), 1–14. https://doi.org/10.1371/journal.pone.0123266
dc.relationZhao, J., Zhu, Y., Jiao, Y., Ning, J., & Yang, Y. (2017). Ionic-liquid-based dispersive liquid–liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1, B2, G1, and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection. Journal of Separation Science, 39(19), 3789–3797. https://doi.org/10.1002/jssc.201600671
dc.relationZhao, Z., Yang, H., Deng, S., Dong, Y., Yan, B., Zhang, K., & Deng, R. (2019). Intrinsic conformation response-leveraged aptamer probe based on aggregation-induced emission dyes for a fl atoxin B 1 detection. Dyes and Pigments, 171(April), 107767. https://doi.org/10.1016/j.dyepig.2019.107767
dc.relationZhou, S., Xu, L., Kuang, H., Xiao, J., & Xu, C. (2020). Immunoassays for rapid mycotoxin detection: State of the art. Analyst, 145(22), 7088–7102. https://doi.org/10.1039/d0an01408g
dc.relationZhu, C., Deng, J., & Jiang, H. (2022). Parameter Optimization of Support Vector Machine to Improve the Predictive Performance for Determination of Aflatoxin B 1 in Peanuts by Olfactory Visualization Technique.
dc.relationZhu, Y., Hassan, Y. I., Lepp, D., Shao, S., & Zhou, T. (2017). Strategies and Methodologies for Developing Microbial Detoxification Systems to. https://doi.org/10.3390/toxins9040130
dc.relationZhu, Y., Xia, X., Deng, S., Yan, B., Dong, Y., Zhang, K., & Deng, R. (2019). Label-free fl uorescent aptasensing of mycotoxins via aggregation-induced emission dye. Dyes and Pigments, 170(April), 107572. https://doi.org/10.1016/j.dyepig.2019.107572
dc.relationFernando, C., & López, B. (2013). Aprovechamiento de la torta residual de sacha inchi (Plukenetia volubilis Linneo) mediante extracción por solventes de su aceite. https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/970
dc.relationDenli, M., & Pérez, J. F. (2006). Contaminación por micotoxinas en los piensos efectos, tratamiento y prevención. FEDNA.
dc.relationGómez Pérez, J. V. (2021). Aflatoxinas, tricotecenos de tipo A y hongos productores en maíz y avena. Nuevos antifúngicos y su impacto en salud. https://roderic.uv.es/handle/10550/78896
dc.relationFAO. (2023). Food safety and quality: Micotoxinas. https://www.fao.org/food/food-safety quality/a-z-index/mycotoxins/es
dc.relationRojas Gatica, J. A. (2013). “Propuesta Metodológica Para Identificar Y Evaluar La Presencia De Micotoxinas En Productos Agrícolas.”
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
dc.titleAvances en Metodologías Para la Detección de Aflatoxinas en Granos en Almacenamiento
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución