dc.contributorRoa-Cordero, Martha Viviana
dc.contributorHernández-Peñaranda, Indira Paola
dc.contributorMontes-Rincón, Claudia Ximena
dc.contributorGrupo de investigación en manejo clínico CliniUdes
dc.creatorRincón-Chaparro, María Alejandra
dc.date.accessioned2023-08-15T15:09:12Z
dc.date.accessioned2023-09-06T18:54:19Z
dc.date.available2023-08-15T15:09:12Z
dc.date.available2023-09-06T18:54:19Z
dc.date.created2023-08-15T15:09:12Z
dc.date.issued2023-06-05
dc.identifierUniversidad de Santander
dc.identifierT 17.23 R461e
dc.identifierRepositorio Digital Universidad de Santander
dc.identifierhttps://repositorio.udes.edu.co
dc.identifierhttps://repositorio.udes.edu.co/handle/001/9008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8701056
dc.description.abstractLas especies de Candida son patógenos oportunistas causantes de gran variedad de infecciones, siendo Candida tropicalis una especie emergente con una tasa alta de mortalidad atribuible a sus factores de virulencia como las adhesinas, la plasticidad morfológica y la formación de biopelículas, siendo este último, un factor asociado al fracaso terapéutico. En este trabajo se realizó la evaluación de la actividad anti-biopelícula de compuestos de cromo (III) y cobalto (II) con ligandos azólicos en un aislado clínico de C. tropicalis resistente al fluconazol y su contraparte de referencia (ATCC 66029). Inicialmente se determinó la capacidad de las cepas para formar biopelículas, por medio de la técnica del cristal violeta. A continuación, se evaluó el efecto de los compuestos sobre la formación de biopelículas y biopelículas preformadas, mediante valoración de la actividad metabólica por ensayo colorimétrico con XTT. Los ensayos permitieron clasificar a las cepas como productoras de biopelículas medianamente positivas a las 24h de incubación. Los complejos de Co (II) con ligandos benzotriazólicos fueron los que presentaron mejor acción al erradicar e inhibir las biopelículas en un 80% y 50% en las cepas sensible y resistente al fluconazol, respectivamente, con concentraciones entre 31,25µg/mL y 62,5 5µg/mL. Los complejos de Co(II) con ligandos triazólicos erradicaron las biopelículas en un 50% en la cepa resistente al fluconazol con concentraciones de 31,25 µg/mL, de este grupo, el compuesto COL2 demostró actividad inhibitoria de biopelícula del 50% con una concentración de 62,5 µg/mL. Por su parte, los compuestos de Cr (III) con ligandos triazólicos fueron activos en un 66.7%, con rangos de concentraciones erradicadoras de biopelículas que oscilaron entre 15,6 y 31,25 µg/mL y demostraron poca actividad inhibitora. Teniendo en cuenta lo anterior, estos resultados demuestran que estos complejos pueden llegar a ser una opción terapéutica para el tratamiento de candidiasis en un futuro.
dc.description.abstractCandida species are opportunistic pathogens causing a great variety of infections, being Candida tropicalis an emerging species with a high mortality rate attributable to its virulence factors such as adhesins, morphological plasticity and biofilm formation, the latter being a factor associated with therapeutic failure. In this work we evaluated the anti-biofilm activity of chromium (III) and cobalt (II) compounds with azole ligands in a clinical isolate of fluconazole-resistant C. tropicalis and its reference counterpart (ATCC 66029). Initially, the ability of the strains to form biofilms was determined using the crystal violet technique. Then, the effect of the compounds on the formation of biofilms and preformed biofilms was evaluated by assessing the metabolic activity by colorimetric assay with XTT. The assays allowed classifying the strains as medium-positive biofilm producers at 24h of incubation. Co(II) complexes with benzotriazole ligands showed the best action by eradicating and inhibiting biofilms by 80% and 50% in fluconazole sensitive and resistant strains, respectively, with concentrations between 31,25µg/mL and 62,5 µg/mL. Co(II) complexes with triazole ligands eradicated biofilms by 50% in the fluconazole-resistant strain with concentrations of 31,25 µg/mL, of this group, compound COL2 demonstrated 50% biofilm inhibitory activity at a concentration of 62,5 µg/mL. On the other hand, Cr (III) compounds with triazole ligands were active in 66,7%, with biofilm eradicating concentrations ranging from 15,6 to 31,25 µg/mL and showed little inhibitory activity. Considering the above, these results demonstrate that these complexes may become a therapeutic option for the treatment of candidiasis in the future.
dc.languagespa
dc.publisherUniversidad de Santan der
dc.publisherBucaramanga
dc.publisherFacultad de Ciencias Médicas y de la Salud
dc.publisherBucaramanga, Colombia
dc.publisherBacteriología y Laboratorio Clínico
dc.relationWiederhold NP. Emerging Fungal Infections: New Species, New Names, and Antifungal Resistance. Clin Chem. 1 de enero de 2022;68(1):83-90.
dc.relationTortorano AM, Prigitano A, Morroni G, Brescini L, Barchiesi F. Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect Drug Resist. 1 de enero de 2021;14:5543-53.
dc.relationKoehler P, Stecher M, Cornely OA, Koehler D, Vehreschild MJGT, Bohlius J, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 1 de octubre de 2019;25(10):1200-12.
dc.relationAngela Maione, La Pietra A, Siciliano A, Mileo A, De Falco M, De Alteriis E, et al. The Arylamidine T-2307 as a Novel Treatment for the Prevention and Eradication of Candida tropicalis Biofilms - PMC [Internet]. 2022 [citado 24 de marzo de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786618/
dc.relationPristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide - Clinical Microbiology and Infection [Internet]. 2019 [citado 24 de marzo de 2023]. Disponible en: https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(19)30149-1/fulltext
dc.relationNegri M, Silva S, Henriques M, Oliveira R. Insights into Candida tropicalis nosocomial infections and virulence factors | SpringerLink [Internet]. 2011 [citado 24 de marzo de 2023]. Disponible en: https://link.springer.com/article/10.1007/s10096-011-1455-z
dc.relationCavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med [Internet]. 2018 [citado 24 de marzo de 2023];5. Disponible en: https://www.frontiersin.org/articles/10.3389/fmed.2018.00028
dc.relationEvans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol. 2021;70(5):001363.
dc.relationMurcia RA, Leal SM, Roa MV, Nagles E, Muñoz-Castro A, Hurtado JJ. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules. agosto de 2018;23(8):2013.
dc.relationFonseca D, Leal-Pinto SM, Roa-Cordero MV, Vargas JD, Moreno-Moreno EM, Macías MA, et al. Inhibition of C. albicans Dimorphic Switch by Cobalt(II) Complexes with Ligands Derived from Pyrazoles and Dinitrobenzoate: Synthesis, Characterization and Biological Activity. Int J Mol Sci. enero de 2019;20(13):3237.
dc.relationRayens E, Norris KA. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect Dis. 1 de enero de 2022;9(1):ofab593.
dc.relationFuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol. enero de 2018;66(1):2-13.
dc.relationArendrup MC, Patterson T. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment | The Journal of Infectious Diseases | Oxford Academic [Internet]. 2017 [citado 24 de marzo de 2023]. Disponible en: https://academic.oup.com/jid/article/216/suppl_3/S445/4107052?login=false
dc.relationRiera FO, Caeiro JP, Angiolini SC, Vigezzi C, Rodriguez E, Icely PA, et al. Invasive Candidiasis: Update and Current Challenges in the Management of This Mycosis in South America. Antibiotics. julio de 2022;11(7):877.
dc.relationWang Q, Li C, Tang D, Tang K. Molecular epidemiology of Candida tropicalis isolated from urogenital tract infections. MicrobiologyOpen. 2020;9(11):e1121.
dc.relationChen PY, Chuang YC, Wu UI, Sun HY, Wang JT, Sheng WH, et al. Clonality of Fluconazole-Nonsusceptible Candida tropicalis in Bloodstream Infections, Taiwan, 2011–2017 - Volume 25, Number 9—September 2019 - Emerging Infectious Diseases journal - CDC. [citado 24 de marzo de 2023]; Disponible en: https://wwwnc.cdc.gov/eid/article/25/9/19-0520_article
dc.relationKaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol. 1 de febrero de 2023;71:102237.
dc.relationNett JE, Crawford K, Marchillo K, Andes DR. Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene. Antimicrob Agents Chemother. agosto de 2010;54(8):3505-8.
dc.relationMukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols. Infect Immun. agosto de 2003;71(8):4333-40.
dc.relationJigar V, Mitchell AP. Candida albicans Biofilm Development and Its Genetic Control [Internet]. 2016 [citado 24 de marzo de 2023]. Disponible en: https://journals.asm.org/doi/epub/10.1128/microbiolspec.MB-0005-2014
dc.relationda Silva MA, Baronetti JL, Páez PL, Paraje MG. Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation With Persister Cells. Front Microbiol [Internet]. 2021 [citado 24 de marzo de 2023];11. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2020.598834
dc.relationFox EP, Nobile CJ. A sticky situation : Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 1 de noviembre de 2012;3(6):315-22.
dc.relationAtiencia-Carrera MB, Cabezas-Mera FS, Tejera E, Machado A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLOS ONE. 3 de febrero de 2022;17(2):e0263522.
dc.relationLamoth F, Lockhart SR, Berkow EL, Calandra T. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 1 de enero de 2018;73(suppl_1):i4-13.
dc.relationAlvarez-Moreno CA, Cortes JA, Denning DW. Burden of Fungal Infections in Colombia. J Fungi. junio de 2018;4(2):41.
dc.relationThompson A, Davies LC, Liao CT, Fonseca DM da, Griffiths JS, Andrews R, et al. The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors. PLOS Pathog. 26 de junio de 2019;15(6):e1007850.
dc.relationBassetti M, Giacobbe DR, Vena A, Trucchi C, Ansaldi F, Antonelli M, et al. Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit Care. 14 de junio de 2019;23(1):219.
dc.relationCortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos EV. Candidemia en Colombia. Biomédica. 1 de marzo de 2020;40(1):195-207.
dc.relationBongomin F, Gago S, Oladele RO, Denning DW. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J Fungi. diciembre de 2017;3(4):57.
dc.relationKothavade R, Kura M, Valanda A, Panthaki M. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole | Microbiology Society [Internet]. 2010 [citado 24 de marzo de 2023]. Disponible en: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.013227-0
dc.relationLi X, Hou Y, Yue L, Liu S, Du J, Sun S. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans. Antimicrob Agents Chemother. 18 de septiembre de 2015;59(10):5885-91.
dc.relationde Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes M do S, Filho AKDB, do Nascimento FRF, et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front Microbiol [Internet]. 2018 [citado 24 de marzo de 2023];9. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01351
dc.relationBrand SR, Sobel JD, Nyirjesy P, Ghannoum MA, Schotzinger RJ, Degenhardt TP. A Randomized Phase 2 Study of VT-1161 for the Treatment of Acute Vulvovaginal Candidiasis. Clin Infect Dis. 1 de octubre de 2021;73(7):e1518-24.
dc.relationRudramurthy SM, Colley T, Abdolrasouli A, Ashman J, Dhaliwal M, Kaur H, et al. In vitro antifungal activity of a novel topical triazole PC945 against emerging yeast Candida auris. J Antimicrob Chemother. 1 de octubre de 2019;74(10):2943-9.
dc.relationLogan A, Wolfe A, Williamson JC. Antifungal Resistance and the Role of New Therapeutic Agents. Curr Infect Dis Rep. 1 de septiembre de 2022;24(9):105-16.
dc.relationThompson G, Soriano A, Skoutelis A, Vazquez J, Honore P, Horcajada J, et al. Rezafungin Versus Caspofungin in a Phase 2, Randomized, Double-blind Study for the Treatment of Candidemia and Invasive Candidiasis: The STRIVE Trial | Clinical Infectious Diseases | Oxford Academic [Internet]. 2020 [citado 24 de marzo de 2023]. Disponible en: https://academic.oup.com/cid/article/73/11/e3647/5909460?login=false
dc.relationPfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. In Vitro Activity of APX001A (Manogepix) and Comparator Agents against 1,706 Fungal Isolates Collected during an International Surveillance Program in 2017. Antimicrob Agents Chemother. 25 de julio de 2019;63(8):e00840-19.
dc.relationArnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102-9.
dc.relationCapoci IRG, Sakita KM, Faria DR, Rodrigues-Vendramini FAV, Arita GS, de Oliveira AG, et al. Two New 1,3,4-Oxadiazoles With Effective Antifungal Activity Against Candida albicans. Front Microbiol [Internet]. 2019 [citado 24 de marzo de 2023];10. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2019.02130
dc.relationWiederhold NP, Najvar LK, Olivo M, Morris KN, Patterson HP, Catano G, et al. Ibrexafungerp Demonstrates In Vitro Activity against Fluconazole-Resistant Candida auris and In Vivo Efficacy with Delayed Initiation of Therapy in an Experimental Model of Invasive Candidiasis. Antimicrob Agents Chemother. 18 de mayo de 2021;65(6):e02694-20.
dc.relationMcAlister J, Shapiro R. New pathogens, new tricks: emerging, drug‐resistant fungal pathogens and future prospects for antifungal therapeutics - Geddes‐McAlister - 2019 - Annals of the New York Academy of Sciences - Wiley Online Library [Internet]. 2028 [citado 24 de marzo de 2023]. Disponible en: https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.13739
dc.relationRomo JA, Pierce CG, Chaturvedi AK, Lazzell AL, McHardy SF, Saville SP, et al. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation. mBio. 1 de diciembre de 2017;8(6):e01991-17.
dc.relationVila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL. Targeting Candida albicans filamentation for antifungal drug development. Virulence. 17 de febrero de 2017;8(2):150-8.
dc.relationTits J, Cools F, De Cremer K, De Brucker K, Berman J, Verbruggen K, et al. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob Agents Chemother. 21 de septiembre de 2020;64(10):e01296-20.
dc.relationLeite LDP, Oliveira MAC de, Vegian MR da C, Sampaio A da G, Nishime TMC, Kostov KG, et al. Effect of Cold Atmospheric Plasma Jet Associated to Polyene Antifungals on Candida albicans Biofilms. Molecules. enero de 2021;26(19):5815.
dc.relationHuang J, Song S, Zhao S, Sun X, Wang Z, Huang X, et al. Anti-virulence activity of novel (1-heteroaryloxy-2-hydroxypropyl)- phenylpiperazine derivatives against both wild-type and clinical drug-resistant Candida albicans strains. Microb Biotechnol. 2023;16(1):116-27.
dc.relationDidehdar M, Chegini Z, Shariati A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front Pharmacol [Internet]. 2022 [citado 24 de marzo de 2023];13. Disponible en: https://www.frontiersin.org/articles/10.3389/fphar.2022.872127
dc.relationColombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, et al. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. Int J Environ Res Public Health. enero de 2022;19(21):14146.
dc.relationMadboly L, Salam M, Bastos J, Shorbagy S, Morsi R. Novel Preclinical Study of Galloylquinic Acid Compounds from Copaifera lucens with Potent Antifungal Activity against Vaginal Candidiasis Induced in a Murine Model via Multitarget Modes of Action | Microbiology Spectrum [Internet]. 2022 [citado 24 de marzo de 2023]. Disponible en: https://journals.asm.org/doi/10.1128/spectrum.02724-21?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
dc.relationChatrath A, Gangwar R, Kumari P, Prasad R. In Vitro Anti-Biofilm Activities of Citral and Thymol Against Candida Tropicalis. J Fungi. marzo de 2019;5(1):13.
dc.relationSilva SL, de Oliveira Pereira F, Cordeiro LV, Neto HD, dos Santos Maia M, da Silva Souza HD, et al. Antifungal activity of 2‐chloro‐N‐phenylacetamide, docking and molecular dynamics studies against clinical isolates of Candida tropicalis and Candida parapsilosis. J Appl Microbiol. 1 de mayo de 2022;132(5):3601-17.
dc.relationHanna MC. Clinical Manifestations of Candidiasis: Beyond Candida albicans. Virol Immunol J [Internet]. 2019 [citado 24 de marzo de 2023];3(3). Disponible en: https://medwinpublishers.com/VIJ/VIJ16000219.pdf
dc.relationKidd S, Abdolrasouli A, Hagen F. Fungal Nomenclature: Managing Change is the Name of the Game | Open Forum Infectious Diseases | Oxford Academic [Internet]. 2023 [citado 24 de marzo de 2023]. Disponible en: https://academic.oup.com/ofid/article/10/1/ofac559/6974385
dc.relationR AN, Rafiq NB. Candidiasis. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [citado 24 de marzo de 2023]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK560624/
dc.relationPatil S, Rao RS, Majumdar B, Anil S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front Microbiol [Internet]. 2015 [citado 24 de marzo de 2023];6. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2015.01391
dc.relationTamo SPB. Candida Infections: Clinical Features, Diagnosis and Treatment. Infect Dis Clin Microbiol. 31 de agosto de 2020;2(2):91-102.
dc.relationO’Farrell N, Quigley M, Fox P. Association between the intact foreskin and inferior standards of male genital hygiene behaviour: a cross-sectional study. Int J STD AIDS. 1 de agosto de 2005;16(8):556-9.
dc.relationHoarau, G, Mukherjee P K, Rousseau G, Hager C, Chandra J, Retuerto M A, et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease | mBio [Internet]. 2026 [citado 24 de marzo de 2023]. Disponible en: https://journals.asm.org/doi/full/10.1128/mBio.01250-16?legid=mbio%3B7%2F5%2Fe01250-16&cpetoc=
dc.relationKumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 1 de agosto de 2011;14(4):386-91.
dc.relationMetin A, Dilek N, Bilgili SG. Recurrent candidal intertrigo: challenges and solutions. Clin Cosmet Investig Dermatol. 17 de abril de 2018;11:175-85.
dc.relationJagtap SA, Saple PP, Dhaliat SB. Congenital cutaneous candidiasis: A rare and unpredictable disease. Indian J Dermatol. 1 de enero de 2011;56(1):92.
dc.relationKauffman CA. Clinical manifestations and diagnosis of candidemia and invasive candidiasis in adults - UpToDate [Internet]. 2023 [citado 24 de marzo de 2023]. Disponible en: https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-candidemia-and-invasive-candidiasis-in-adults
dc.relationPappas PG, Lionakis M, Arendrup MC, Zeichner L, Kullberg BJ. Invasive candidiasis | Nature Reviews Disease Primers [Internet]. 2000 [citado 24 de marzo de 2023]. Disponible en: https://www.nature.com/articles/nrdp201826
dc.relationMcCarty TP, White CM, Pappas PG. Candidemia and Invasive Candidiasis. Infect Dis Clin North Am. 1 de junio de 2021;35(2):389-413.
dc.relationCortés JA, Corrales IF, Cortés JA, Corrales IF. Invasive Candidiasis: Epidemiology and Risk Factors [Internet]. Fungal Infection. IntechOpen; 2018 [citado 24 de marzo de 2023]. Disponible en: https://www.intechopen.com/chapters/64365
dc.relationYe N, Liu Z, Tang W, Li X, Chu W, Zhou Q. Systematic Characterization of Epidemiology, Antifungal Susceptibility, Risk Factors and Outcomes of Candidaemia: A Six-Year Chinese Study. Infect Drug Resist. 26 de agosto de 2022;15:4887-98.
dc.relationCaceres DH, Rivera SM, Armstrong PA, Escandon P, Chow NA, Ovalle MV, et al. Case–Case Comparison of Candida auris Versus Other Candida Species Bloodstream Infections: Results of an Outbreak Investigation in Colombia. Mycopathologia. 1 de octubre de 2020;185(5):917-23.
dc.relationCortés JA, Jaimes JA, Leal AL. Incidence and prevalence of candidemia in critically ill patients in Colombia. Rev Chil Infectol. diciembre de 2013;30(6):599-604.
dc.relationBedout C, Gómez B. Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano. 7 de octubre de 2010 [citado 24 de marzo de 2023]; Disponible en: https://revistainfectio.org/P_OJS/index.php/infectio/article/view/27/39,%20https://revistainfectio.org/P_OJS/index.php/infectio/article/view/582
dc.relationNucci M, Thompson-Moya L, Guzman-Blanco M, Tiraboschi IN, Cortes JA, Echevarría J, et al. Recommendations for the management of candidemia in adults in Latin America. Rev Iberoam Micol. 1 de julio de 2013;30(3):179-88.
dc.relationZuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol [Internet]. 2017 [citado 24 de marzo de 2023];8. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2017.01927
dc.relationSilva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance | FEMS Microbiology Reviews | Oxford Academic [Internet]. 2012 [citado 24 de marzo de 2023]. Disponible en: https://academic.oup.com/femsre/article/36/2/288/563981?login=false
dc.relationKurtzman C P, Fell J W, Boekhout T. The Yeasts - 5th Edition [Internet]. 2011 [citado 24 de marzo de 2023]. Disponible en: https://www.elsevier.com/books/the-yeasts/kurtzman/978-0-444-52149-1
dc.relationChoi MJ, Won EJ, Shin JH, Kim SH, Lee WG, Kim MN, et al. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother. junio de 2016;60(6):3653-61.
dc.relationÁlvarez-Lerma F, Nolla-Salas J, León C, Palomar M, Jordá R, Carrasco N, et al. Candiduria in critically ill patients admitted to intensive care medical units. Intensive Care Med. 1 de julio de 2003;29(7):1069-76.
dc.relationColombo AL, Guimarães T, Silva LRBF, Monfardini LP de A, Cunha AKB, Rady P, et al. Prospective Observational Study of Candidemia in São Paulo, Brazil: Incidence Rate, Epidemiology, and Predictors of Mortality. Infect Control Hosp Epidemiol. mayo de 2007;28(5):570-6.
dc.relationMiranda LN, van der Heijden IM, Costa SF, Sousa API, Sienra RA, Gobara S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 1 de mayo de 2009;72(1):9-16.
dc.relationKontoyiannis DP, Vaziri I, Hanna HA, Boktour M, Thornby J, Hachem R, et al. Risk Factors for Candida tropicalis Fungemia in Patients with Cancer. Clin Infect Dis. 15 de noviembre de 2001;33(10):1676-81.
dc.relationUzun O, Ascioglu S, Anaissie EJ, Rex JH. Risk Factors and Predictors of Outcome in Patients with Cancer and Breakthrough Candidemia. Clin Infect Dis. 15 de junio de 2001;32(12):1713-7.
dc.relationNegri M, Gonçalves V, Silva S, Henriques M, Azeredo J, Oliveira R. Crystal violet staining to quantify Candida adhesion to epithelial cells. Br J Biomed Sci. 2010;67(3):120-5.
dc.relationTronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol. 1 de diciembre de 2008;46(8):749-72.
dc.relationPunithavathy P, Menon T. Characterization of gene family that mediates the adhesion of biofilms formed by Candida tropicalis isolated from HIV and non-HIV patients. BMC Infect Dis. 4 de mayo de 2012;12(1):O8.
dc.relationNobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, et al. Complementary Adhesin Function in C. albicans Biofilm Formation. Curr Biol. 22 de julio de 2008;18(14):1017-24.
dc.relationLackey E, Vipulanandan G, Childers DS, Kadosh D. Comparative Evolution of Morphological Regulatory Functions in Candida Species. Eukaryot Cell. octubre de 2013;12(10):1356-68.
dc.relationHube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology. 2001;147(8):1997-2005.
dc.relationSchaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365-77.
dc.relationGiolo MP, Svidzinski TIE. Physiopathogenesis, epidemiology and laboratory diagnosis of candidemia. J Bras Patol E Med Lab. 2010;46(3):225-34.
dc.relationFanning S, Mitchell AP. Fungal Biofilms. PLOS Pathog. 5 de abril de 2012;8(4):e1002585.
dc.relationCzechowicz P, Nowicka J, Gościniak G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int J Mol Sci. enero de 2022;23(11):5895.
dc.relationFernández Rivero ME. Estudio de la formación de la biopelícula de Candida spp. y evaluación de nuevas combinaciones farmacológicas [Internet] [http://purl.org/dc/dcmitype/Text]. Universidad de Navarra; 2017 [citado 24 de marzo de 2023]. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=110760
dc.relationAraújo D, Henriques M, Silva S. Portrait of Candida Species Biofilm Regulatory Network Genes: Trends in Microbiology [Internet]. 2017 [citado 24 de marzo de 2023]. Disponible en: https://www.cell.com/trends/microbiology/fulltext/S0966-842X(16)30136-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X16301366%3Fshowall%3Dtrue
dc.relationRodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, et al. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces. 1 de febrero de 2019;174:110-25.
dc.relationWan Harun WHA, Jamil NA, Jamaludin NH, Nordin MAF. Effect of Piper betle and Brucea javanica on the Differential Expression of Hyphal Wall Protein (HWP1) in Non-Candida albicans Candida (NCAC) Species. Evid Based Complement Alternat Med. 18 de junio de 2013;2013:e397268.
dc.relationPereira R, Fontenelle dos S, Brito E H, Morais S M. Biofilm of Candida albicans: formation, regulation and resistance | Journal of Applied Microbiology | Oxford Academic [Internet]. 2021 [citado 25 de marzo de 2023]. Disponible en: https://academic.oup.com/jambio/article/131/1/11/6715364
dc.relationCalderon J, Zavrel M, Ragni E, Fonzi W, Rupp S, Popolo L. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling enzyme, is required for adhesion and invasion | Microbiology Society [Internet]. 2010 [citado 25 de marzo de 2023]. Disponible en: https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.038000-0
dc.relationLi L, Zhang C, Konopka J. A Candida albicans Temperature-Sensitive cdc12-6 Mutant Identifies Roles for Septins in Selection of Sites of Germ Tube Formation and Hyphal Morphogenesis | Eukaryotic Cell [Internet]. 2012 [citado 25 de marzo de 2023]. Disponible en: https://journals.asm.org/doi/10.1128/EC.00216-12
dc.relationAl-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999-1008.
dc.relationPorman AM, Hirakawa MP, Jones SK, Wang N, Bennett RJ. MTL–Independent Phenotypic Switching in Candida tropicalis and a Dual Role for Wor1 in Regulating Switching and Filamentation. PLOS Genet. 21 de marzo de 2013;9(3):e1003369.
dc.relationGulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 1 de mayo de 2016;18(5):310-21.
dc.relationMba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis. 1 de octubre de 2020;39(10):1797-819.
dc.relationSilva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M. Candida Species Biofilms Antifungal Resistance. J Fungi. marzo de 2017;3(1):8.
dc.relationFernandes T, Silva S, Henriques M. Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression. Mycopathologia. 1 de octubre de 2016;181(9):643-51.
dc.relationUppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, et al. Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLOS Pathog. 26 de marzo de 2010;6(3):e1000828.
dc.relationTumbarello M, Fiori B, Trecarichi EM, Posteraro P, Losito AR, Luca AD, et al. Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital. PLOS ONE. 30 de marzo de 2012;7(3):e33705.
dc.relationDouglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 1 de enero de 2003;11(1):30-6.
dc.relationBaillie G, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents | Journal of Antimicrobial Chemotherapy | Oxford Academic [Internet]. 2000 [citado 19 de abril de 2023]. Disponible en: https://academic.oup.com/jac/article/46/3/397/881885?login=false
dc.relationDonlan R, Costerton W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms | Clinical Microbiology Reviews [Internet]. 2002 [citado 19 de abril de 2023]. Disponible en: https://journals.asm.org/doi/10.1128/CMR.15.2.167-193.2002?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
dc.relationNobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation - Nobile - 2006 - Cellular Microbiology - Wiley Online Library [Internet]. 2006 [citado 19 de abril de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00761.x
dc.relationSilva-Dias A, Palmeira-de-Oliveira A, Miranda IM, Branco J, Cobrado L, Monteiro-Soares M, et al. Anti-biofilm activity of low-molecular weight chitosan hydrogel against Candida species. Med Microbiol Immunol (Berl). 1 de febrero de 2014;203(1):25-33.
dc.relationHeffner DK, Franklin WA. Endocarditis Caused by Torulopsis glabrata. Am J Clin Pathol. 1 de septiembre de 1978;70(3):420-3.
dc.relationSilva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol. 1 de noviembre de 2009;47(7):681-9.
dc.relationBerkowitz I D, Robboy S J, Karchmer A W, Kunz L J. Torulopsis glabrata fungemia-a clinical pathological study — Johns Hopkins University [Internet]. 1979 [citado 19 de abril de 2023]. Disponible en: https://jhu.pure.elsevier.com/en/publications/torulopsis-glabrata-fungemia-a-clinical-pathological-study-4
dc.relationTaff HT, Nett JE, Andes DR. Comparative analysis of Candida biofilm quantitation assays. Med Mycol. 1 de febrero de 2012;50(2):214-8.
dc.relationValdivieso M, Luna M, Bodey GP, Rodriguez V, Gröschel D. Fungemia due to Torulopsis glabrata in the compromised host. Cancer. 1976;38(4):1750-6.
dc.relationGácser A, Trofa D, Schäfer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest. 1 de octubre de 2007;117(10):3049-58.
dc.relationHawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother. septiembre de 1995;39(9):2128-31.
dc.relationSilva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 1 de mayo de 2011;19(5):241-7.
dc.relationBarantsevich N, Barantsevich E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics. junio de 2022;11(6):718.
dc.relationSzymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins – structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem. 31 de diciembre de 2022;37(1):876-94.
dc.relationSanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015;58(S2):2-13.
dc.relationNett JE, Andes DR. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect Dis Clin North Am. 1 de marzo de 2016;30(1):51-83.
dc.relationTeixeira MM, Carvalho DT, Sousa E, Pinto E. New Antifungal Agents with Azole Moieties. Pharmaceuticals. noviembre de 2022;15(11):1427.
dc.relationWang D, An N, Yang Y, Yang X, Fan Y, Feng J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression | Antimicrobial Resistance & Infection Control | Full Text [Internet]. 2021 [citado 25 de marzo de 2023]. Disponible en: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-021-00890-2
dc.relationLeepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi. octubre de 2022;8(10):983.
dc.relationDurán-Barajas SM. Bioactividad de Complejos Metálicos con Ligandos Azólicos Sobre el Crecimiento Planctónico y Adherente de Especies de Candida Sensibles y Resistentes al Fluconazol. 29 de noviembre de 2021 [citado 11 de mayo de 2023]; Disponible en: http://repositorioslatinoamericanos.uchile.cl/handle/2250/3604954
dc.relationPubChem. Fluconazole [Internet]. [citado 26 de mayo de 2023]. Disponible en: https://pubchem.ncbi.nlm.nih.gov/compound/3365
dc.relationPubChem. Itraconazole [Internet]. [citado 26 de mayo de 2023]. Disponible en: https://pubchem.ncbi.nlm.nih.gov/compound/55283
dc.relationJin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-Forming Ability of Candida albicans Is Unlikely To Contribute to High Levels of Oral Yeast Carriage in Cases of Human Immunodeficiency Virus Infection. J Clin Microbiol. julio de 2003;41(7):2961-7.
dc.relationPierce CG, Uppuluri P, Tummala S, Lopez-Ribot JL. A 96 well microtiter plate-based method for monitoring formation and antifungal susceptibility testing of Candida albicans biofilms. J Vis Exp. 1 de octubre de 2010;(44):2287.
dc.relationBandara HMHN, Hewavitharana AK, Shaw PN, Smyth HDC, Samaranayake LP. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int J Pharm. 30 de marzo de 2020;578:119096.
dc.relationXie Y, Liu X, Zhou P. In vitro Antifungal Effects of Berberine Against Candida spp. In Planktonic and Biofilm Conditions - PMC [Internet]. 2020 [citado 27 de abril de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957002/
dc.relationMourer T, El Ghalid M, d’Enfert C, Bachellier-Bassi S. Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Res Microbiol. 1 de abril de 2021;172(3):103813.
dc.relationTreviño-Rangel R de J, Peña-López CD, Hernández-Rodríguez PA, Beltrán-Santiago D, González GM. Association between Candida biofilm-forming bloodstream isolates and the clinical evolution in patients with candidemia: An observational nine-year single center study in Mexico. Rev Iberoam Micol. 1 de enero de 2018;35(1):11-6.
dc.relationAtiencia-Carrera MB, Cabezas-Mera FS, Vizuete K, Debut A, Tejera E, Machado A. Evaluation of the biofilm life cycle between Candida albicans and Candida tropicalis. Front Cell Infect Microbiol [Internet]. 2022 [citado 11 de abril de 2023];12. Disponible en: https://www.frontiersin.org/articles/10.3389/fcimb.2022.953168
dc.relationVavala E, Colone M, Passariello C, Celestino I, Toccacieli L, Stringaro A, et al. Characterization of biofilms in drug-sensitive and drug-resistant strains of Candida albicans. J Chemother. 1 de abril de 2013;25(2):87-95.
dc.relationNegri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia. abril de 2016;181(3-4):217-24.
dc.relationDerkacz D, Krasowska A. Alterations in the Level of Ergosterol in Candida albicans’ Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. Int J Mol Sci. enero de 2023;24(4):3966.
dc.relationOlar R, Badea M, Chifiriuc MC. Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules. enero de 2022;27(3):758.
dc.relationSolano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 1 de abril de 2014;18:96-104.
dc.relationSardi J de CO, Freires IA, Lazarini JG, Infante J, de Alencar SM, Rosalen PL. Unexplored endemic fruit species from Brazil: Antibiofilm properties, insights into mode of action, and systemic toxicity of four Eugenia spp. Microb Pathog. 1 de abril de 2017;105:280-7.
dc.relationAl-Fattani MA, Douglas LJ. Penetration of Candida Biofilms by Antifungal Agents. Antimicrob Agents Chemother. septiembre de 2004;48(9):3291-7.
dc.relationMiranda-Cadena K, Marcos-Arias C, Perez-Rodriguez A, Cabello-Beitia I, Mateo E, Sevillano E, et al. In vitro and in vivo anti-Candida activity of citral in combination with fluconazole. J Oral Microbiol. 14(1):2045813.
dc.relationShi C, Liu J, Li W, Zhao Y, Meng L, Xiang M. Expression of fluconazole resistance-associated genes in biofilm from 23 clinical isolates of Candida albicans. Braz J Microbiol. 1 de enero de 2019;50(1):157-63.
dc.relationCavaliere R, Ball J, Turnbull L, Whitchurch C. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin - Cavaliere - 2014 - MicrobiologyOpen - Wiley Online Library [Internet]. 2014 [citado 25 de mayo de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/mbo3.187
dc.relationFudulu A, Olar R, Maxim C, Scăeţeanu GV, Bleotu C, Matei L, et al. New Cobalt (II) Complexes with Imidazole Derivatives: Antimicrobial Efficiency against Planktonic and Adherent Microbes and In Vitro Cytotoxicity Features. Molecules. enero de 2021;26(1):55.
dc.relationDias B, Dantas F, Galvão F, Pinheiro J, Wender H, Pizzuti L, et al. Synthesis, structural characterization, and prospects for new cobalt (II) complexes with thiocarbamoyl-pyrazoline ligands as promising antifungal agents - ScienceDirect [Internet]. 2020 [citado 18 de mayo de 2023]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0162013420303056?via%3Dihub
dc.relationLiu X, Testa B, Fahr A. Lipophilicity and Its Relationship with Passive Drug Permeation. Pharm Res. 1 de mayo de 2011;28(5):962-77.
dc.relationPáez PL, Bazán CM, Bongiovanni ME, Toneatto J, Albesa I, Becerra MC, et al. Oxidative stress and antimicrobial activity of chromium(III) and ruthenium(II) complexes on Staphylococcus aureus and Escherichia coli. BioMed Res Int. 2013;2013:906912.
dc.relationDeswal Y, Asija S, Kumar D, Jindal DK, Chandan G, Panwar V, et al. Transition metal complexes of triazole-based bioactive ligands: synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. Res Chem Intermed. 2022;48(2):703-29.
dc.relationRezaei Z, Khabnadideh S, Zomorodian K, Pakshir, K, Kashi G, Sanagoei N, et al. Design, Synthesis and Antifungal Activity of Some New Imidazole and Triazole Derivatives - Rezaei - 2011 - Archiv der Pharmazie - Wiley Online Library [Internet]. 2011 [citado 26 de mayo de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/ardp.201000357
dc.relationWang T, Shao J, Da W, Li Q, Shi G, Wu D, et al. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism. Front Microbiol [Internet]. 2018 [citado 26 de mayo de 2023];9. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02892
dc.relationGałczyńska K, Ciepluch K, Madej Ł, Kurdziel K, Maciejewska B, Drulis-Kawa Z, et al. Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Sci Rep. 5 de julio de 2019;9(1):9777.
dc.relationDługosz O, Szostak K, Staroń A, Prociak, J, Banach M. Methods for Reducing the Toxicity of Metal and Metal Oxide NPs as Biomedicine [Internet]. 2020 [citado 23 de mayo de 2023]. Disponible en: https://www.mdpi.com/1996-1944/13/2/279
dc.relationBarac A, Cevik M, Colovic N, Lekovic D, Stevanovic G, Micic J, et al. Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks. Mycoses. 2020;63(4):326-33.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
dc.titleExploración del Potencial Antifúngico de Complejos Metálicos de Cromo (III) y Cobalto (II) con Ligandos Azólicos Sobre Biopelículas de Candida tropicalis
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución