dc.contributor | Barco Burgos, Jimmy | |
dc.contributor | Universidad ECCI | |
dc.creator | Guzmán Bello, Nury Constanza | |
dc.creator | Linares González, Cristian Enrique | |
dc.date | 2023-01-10T21:56:23Z | |
dc.date | 2023-01-10T21:56:23Z | |
dc.date | 2018 | |
dc.date.accessioned | 2023-09-06T18:49:35Z | |
dc.date.available | 2023-09-06T18:49:35Z | |
dc.identifier | https://repositorio.ecci.edu.co/handle/001/3199 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8700917 | |
dc.description | El transporte es una de las problemáticas más importantes en las zonas urbanas alrededor
del mundo. El aumento del costo de combustible, la contaminación ambiental y la congestión
en carreteras son algunas de las preocupaciones que han llevado a la necesidad de
considerar formas alternativas de transporte y la búsqueda de tecnologías alternas que
permitan disminuir el consumo de combustibles fósiles y las emisiones de los motores de
combustión interna. Esta problemática ha motivado a investigadores a buscar soluciones que
no requieran drásticas modificaciones enel diseño de los motores y que no generen impacto
negativo en el rendimiento y los costos de manufactura. | |
dc.description | Transportation is one of the most important problems in urban areas around the world. The
increase in fuel costs, environmental pollution and road congestion are some of the concerns
that have led to the need to consider alternative forms of transport and the search for
alternative technologies to reduce fossil fuel consumption and emissions. the internal
combustion engines. This problem has motivated researchers to look for solutions that do
not require drastic modifications in the design of the engines and that do not generate
negative impact on performance and manufacturing costs. | |
dc.description | TÍTULO DEL PROYECTO 12
1. RESUMEN DEL PROYECTO 12
2. ABSTRAC 14
3. PLANTEAMIENTO DE LA PREGUNTA O PROBLEMA DE INVESTIGACIÓN 16
4. JUSTIFICACIÓN 17
5. ANTECEDENTES 18
6. OBJETIVOS 21
6.1. OBJETIVO GENERAL 21
6.2. Objetivos Específicos 21
7. EL MARCO TEÓRICO 22
8. DISEÑO METODOLÓGICO 27
8.1. FASE DE DESARROLLO 27
8.2. INSTRUMENTACIÓN DEL MOTOR 31
8.3. PROCEDIMIENTO PARA REALIZAR MONTAJE 32
8.3.1. MONTAJE DEL ESCÁNER 32
8.3.2. MONTAJE DE LA BALANZA 33
8.3.3. MONTAJE DEL ANALIZADOR DE GASES 34
8.3.4. MONTAJE DE SISTEMA ADQUISICIÓN DE DATOS 35
8.3.5. ALISTAMIENTO DE HERRAMIENTAS NECESARIAS PARA LA EXPERIMENTACIÓN 37
8.3.6. DESARROLLO DE LA PRUEBA EXPERIMENTAL 37
9. RECOLECCIÓN DE DATOS 42
10. ANÁLISIS DE DATOS 71
11. CONCLUSIONES 78
12. RECOMENDACIONES 79
13. REFERENCIAS 80 | |
dc.description | Pregrado | |
dc.description | Ingeniero en Mecánica | |
dc.description | Ingeniería Mecánica | |
dc.format | 83 p. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad ECCI | |
dc.publisher | Colombia | |
dc.publisher | Facultad de Ingenierías | |
dc.relation | DEAM, PNUD, MADS, DNP, and CANCILLERÍA, Inventario nacional y
departamental de Gases Efecto Invernadero – Colombia. Tercera
Comunicación Nacional de Cambio Climático. 2016. | |
dc.relation | I. E. Agency, “Energy production,” p. 2011, Dec. 2011. | |
dc.relation | I. E. del G. I. de E. sobre el C. C. IPCC, Fuentes de energía renovables y
mitigación del cambio climatico. 2011. | |
dc.relation | I. E. Agency, “Technology Roadmap Bioenergy for Heat and Power.” | |
dc.relation | M. M. El-Kassaby, Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr, “Effect of
hydroxy (HHO) gas addition on gasoline engine performance and emiss
ions,” Alexandria Eng. J., vol. 55, no.1, pp. 243–251, 2016. | |
dc.relation | P. Chaiwongsa, N. Pornsuwancharoen, and P. P. Yupapin, “Effective
hydrogen generator testing for on-site small engine,” Phys. Procedia,
vol. 2, no. 1, pp. 93–100, 2009. | |
dc.relation | M. del Medio Ambiente de Colombia, “EVALUACIÓN DEL PROGRAMA DE
CONVERSIÓN A GNV DE VEHÍCULOS DE LA FLOTA DE EMPRESAS PUBLICAS
DE MEDELLÍN,” 2001. | |
dc.relation | J. A. Caton, “Implications of fuelselection for an SI engine: Results from the
first and second laws of thermodynamics,” Fuel, vol. 89, no. 11, pp. 3157–
3166, 2010. | |
dc.relation | M. B. King, “Water electrolyzers and the zero-point energy,” Phys. Procedia,
vol. 20, pp. 435– 445, 2011. | |
dc.relation | S. A. Musmar and A. A. Al-Rousan, “Effect of HHO gas on combustion
emissions in gasoline engines,” Fuel, vol. 90, no. 10, pp. 3066–3070, 2011. | |
dc.relation | A. C. Yilmaz, E. Uludamar, and K. Aydin, “Effect of hydroxy (HHO) gas addition
on performance and exhaust emissions in compression ignition engines,” Int.
J. Hydrogen Energy, vol. 35, no. 20, pp. 11366–11372, 2010. | |
dc.relation | C. Bae and J. Kim, “Alternative fuels for internal combustion engines,”
Proc. Combust. Inst., vol. 36, no. 3, pp. 3389–3413, 2017. | |
dc.relation | L. Yingjian, Q. Qi, H. Xiangzhu, and L. Jiezhi, “Energy balance and efficiency
analysis for power generation in internal combustion engine sets using
biogas,” Sustain. Energy Technol. Assessments, vol. 6, pp. 25–33, 2014. | |
dc.relation | Idae, “Combustibles y vehículos alternativos,” 2005. | |
dc.relation | J. Goñi and M. Rojas, “Combustibles alternativos en motores de
combustión interna 1,” Ing. Ind., vol. 32, pp. 199–229, 2014. | |
dc.relation | C. Bae and J. Kim, “Alternative fuels for internal combustion engines,”
Proc. Combust. Inst., vol. 0, pp. 1–25, 2016. | |
dc.relation | Grupo Bancolombia, “Gas Natural Vehicular: presente y futuro.”
[Online]. Available:
https://www.grupobancolombia.com/wps/portal/empresas/capital inteligente/actualidad- economica-sectorial/gas-natural-vehicular-
presente-futuro. [Accessed: 15-Oct-2017]. | |
dc.relation | I. E. Agency, “Energy Technology Perspectives 2012 Pathways to a Clean
EnergySystem Resumen Ejecutivo,” 2012. | |
dc.relation | V. Chintala and K. A. Subramanian, “Hydrogen energy share improvement
along with NOx (oxides of nitrogen) emission reduction in a hydrogen
dual-fuel compression ignition engine using water injection,” Energy
Convers. Manag., vol. 83, no. x, pp. 249–259, 2014. | |
dc.relation | V. S. Yadav, S. L. Soni, and D. Sharma, “Engine performance of optimized
hydrogen-fueled direct injection engine,” Energy, vol. 65, pp. 116–122,
2014. | |
dc.relation | M. Deb, A. Paul, D. Debroy, G. R. K. Sastry, R. S. Panua, and P. K. Bose, “An
experimental investigation of performance-emission trade off
characteristics of a CI engine using hydrogen as dual fuel,” Energy, vol. 85,
pp. 569–585, 2015. | |
dc.relation | V. Chintala and K. A. Subramanian, “Experimental investigation of
autoignition of hydrogen-air charge in a compression ignition engine under
dual-fuel mode,” Energy, vol. 138, pp. 197–209, 2017. | |
dc.relation | H. M. Cho and B. Q. He, “Spark ignition natural gas engines-A review,”
Energy Convers. Manag., vol. 48, no. 2, pp. 608–618, 2007. | |
dc.relation | A. H. Kakaee and A. Paykani, “Research and development of natural-gas
fueled enginesin Iran,” Renew. Sustain. Energy Rev., vol. 26, pp. 805–821,
2013. | |
dc.relation | M. Ozcanli, M. A. Akar, A. Calik, and H. Serin, “Using HHO (Hydroxy) and
hydrogen enriched castor oil biodiesel in compression ignition engine,” Int. J.
Hydrogen Energy, vol. 42, no. 36, pp. 23366–23372, 2017. | |
dc.relation | C. Tecnnova, “Análisis de libre operación celdas de hidrógeno para mejorar
la eficiencia del combustible power hho,” 2013. | |
dc.relation | G. Javier, S. Carlos, H. B. Alonso, M. Carlos, and T. Gonzalo, “Oxidación de H2
y CO en una celda de combustible con ánodo de platino-estaño Oxidation of
H2 and CO in a fuel cell with a Platinum-tin Anode,” Ing. e Investig., vol. 24,
no. 2, pp. 35–40, 2004. | |
dc.relation | C. Monsalve and B. Hoyos, “Evaluación de una celda de combustible de
electrolito polimérico con ánodo de Pt-Sn operando con H2, mezcla H2-CO,
propano y metano,” Energética, vol. 34, pp. 11–14, 2005. | |
dc.relation | A. Ignacio and B. Arce, “tecnologías alternativas para vehículos automotores
y su impactoen las concentraciones de carbono atmosférico Dinámica de la
penetración de tecnologías alternativas para vehículos automotores y su
impacto en las concentraciones de carbono atmosférico,” 2011. | |
dc.relation | T. Rajasekaran, K. Duraiswamy, M. Bharathiraja, and S. Poovaragavan,
“Characteristics of engine at various speed conditions by mixing of HHO
with gasoline and LPG,” ARPN J. Eng. Appl. Sci., vol. 10, no. 1, pp. 46–51,
2015. | |
dc.relation | gasNAtural fenosa, “Proceso de instalación GNV — Gas Natural Fenosa.”
[Online]. Available:
http://www.gasnaturalfenosa.com.co/co/gas+natural+vehicular++gnv/insta
la+gas+natural+vehicular+/1297278295105/proceso+de+instalacion+gnv.html.
[Accessed: 16-Oct-2017]. | |
dc.relation | Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers:a system simulation
approach,” Int. J. Hydrogen Energy, vol. 28, pp. 21–33, 2003. | |
dc.relation | “Review of water electrolysis technologies and design of renewable
hydrogen production systems.” | |
dc.relation | A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I.
Shimomura, and I. Nagashima, “Basic study of alkaline water electrolysis,”
Electrochim. Acta, 2013. | |
dc.relation | R. Bhandari, C. A. Trudewind, and P. Zapp, “Life cycle assessment of hydrogen
production via electrolysis - A review,” Journal of Cleaner Production. 2014. | |
dc.relation | General Motors Company, “Technical Data Sheet Chevrolet Aveo,” pp. 6–7, 2013. | |
dc.relation | A.-H. Kakaee, A. Paykani, and M. Ghajar, “The influence of fuel composition on
the combustion and emission characteristics of natural gas fueled engines,”
Renew. Sustain. Energy Rev., vol. 38, pp. 64–78, 2014. | |
dc.rights | Derechos Reservados - Universidad ECCI, 2018 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Celda fotovoltaica | |
dc.subject | Analizador de gases | |
dc.subject | Celda de hidrógeno | |
dc.subject | Generador de oxihidrógeno | |
dc.subject | Photovoltaic cell | |
dc.subject | Gas analyzer | |
dc.subject | Hydrogen cell | |
dc.title | Caracterización de motor de combustión interna en diferentes condiciones de velocidad mediante mezcla de hidrógeno, gasolina y gas natural vehicular. | |
dc.type | Trabajo de grado - Pregrado | |
dc.type | http://purl.org/coar/resource_type/c_46ec | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type | https://purl.org/redcol/resource_type/WP | |
dc.type | info:eu-repo/semantics/updatedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |