dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Biasi, Carlos | |
dc.creator | Libardi, Alice Kimie Miwa | |
dc.date | 2013-09-30T18:51:20Z | |
dc.date | 2014-05-20T14:17:08Z | |
dc.date | 2016-10-25T17:39:49Z | |
dc.date | 2013-09-30T18:51:20Z | |
dc.date | 2014-05-20T14:17:08Z | |
dc.date | 2016-10-25T17:39:49Z | |
dc.date | 2008-08-01 | |
dc.date.accessioned | 2017-04-05T22:23:56Z | |
dc.date.available | 2017-04-05T22:23:56Z | |
dc.identifier | Manuscripta Mathematica. New York: Springer, v. 126, n. 4, p. 527-530, 2008. | |
dc.identifier | 0025-2611 | |
dc.identifier | http://hdl.handle.net/11449/25138 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/25138 | |
dc.identifier | 10.1007/s00229-008-0193-8 | |
dc.identifier | WOS:000257751200006 | |
dc.identifier | http://dx.doi.org/10.1007/s00229-008-0193-8 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/870064 | |
dc.description | Let us consider M a closed smooth connected m-manifold, N a smooth ( 2m-2)-manifold and f: M -> N a continuous map, with m equivalent to 1( 4). We prove that if f*: H(1)(M; Z(2)) -> H(1)(f(M); Z(2)) is injective, then f is homotopic to an immersion. Also we give conditions to a map between manifolds of codimension one to be homotopic to an immersion. This work complements some results of Biasi et al. (Manu. Math. 104, 97-110, 2001; Koschorke in The singularity method and immersions of m-manifolds into manifolds of dimensions 2m-2, 2m-3 and 2m-4. Lecture Notes in Mathematics, vol. 1350. Springer, Heidelberg, 1988; Li and Li in Math. Proc. Camb. Phil. Soc. 112, 281-285, 1992). | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | Manuscripta Mathematica | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | On codimensions k immersions of m-manifolds for k=1 and k=m-2 | |
dc.type | Otro | |