dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBiasi, Carlos
dc.creatorLibardi, Alice Kimie Miwa
dc.date2013-09-30T18:51:20Z
dc.date2014-05-20T14:17:08Z
dc.date2016-10-25T17:39:49Z
dc.date2013-09-30T18:51:20Z
dc.date2014-05-20T14:17:08Z
dc.date2016-10-25T17:39:49Z
dc.date2008-08-01
dc.date.accessioned2017-04-05T22:23:56Z
dc.date.available2017-04-05T22:23:56Z
dc.identifierManuscripta Mathematica. New York: Springer, v. 126, n. 4, p. 527-530, 2008.
dc.identifier0025-2611
dc.identifierhttp://hdl.handle.net/11449/25138
dc.identifierhttp://acervodigital.unesp.br/handle/11449/25138
dc.identifier10.1007/s00229-008-0193-8
dc.identifierWOS:000257751200006
dc.identifierhttp://dx.doi.org/10.1007/s00229-008-0193-8
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/870064
dc.descriptionLet us consider M a closed smooth connected m-manifold, N a smooth ( 2m-2)-manifold and f: M -> N a continuous map, with m equivalent to 1( 4). We prove that if f*: H(1)(M; Z(2)) -> H(1)(f(M); Z(2)) is injective, then f is homotopic to an immersion. Also we give conditions to a map between manifolds of codimension one to be homotopic to an immersion. This work complements some results of Biasi et al. (Manu. Math. 104, 97-110, 2001; Koschorke in The singularity method and immersions of m-manifolds into manifolds of dimensions 2m-2, 2m-3 and 2m-4. Lecture Notes in Mathematics, vol. 1350. Springer, Heidelberg, 1988; Li and Li in Math. Proc. Camb. Phil. Soc. 112, 281-285, 1992).
dc.languageeng
dc.publisherSpringer
dc.relationManuscripta Mathematica
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleOn codimensions k immersions of m-manifolds for k=1 and k=m-2
dc.typeOtro


Este ítem pertenece a la siguiente institución