dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorGoncalves, D.
dc.creatorVieira, João Peres
dc.date2014-02-26T17:21:13Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2014-02-26T17:21:13Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2005-01-01
dc.date.accessioned2017-04-05T22:23:37Z
dc.date.available2017-04-05T22:23:37Z
dc.identifierHouston Journal of Mathematics. Houston: Univ Houston, v. 31, n. 1, p. 87-101, 2005.
dc.identifier0362-1588
dc.identifierhttp://hdl.handle.net/11449/25110
dc.identifierhttp://acervodigital.unesp.br/handle/11449/25110
dc.identifierWOS:000227036800007
dc.identifierhttp://math.uh.edu/~hjm/Vol31-1.html
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/870038
dc.descriptionIn this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function.
dc.languageeng
dc.publisherUniv Houston
dc.relationHouston Journal of Mathematics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectfree actions
dc.subjectintegral representation
dc.subjectBieberbach groups
dc.subjectp-groups
dc.titleFree actions of abelian p-groups on the n-torus
dc.typeOtro


Este ítem pertenece a la siguiente institución