dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBruschi, S. M.
dc.creatorCarvalho, A. N.
dc.creatorCholewa, J. W.
dc.creatorDlotko, Tornasz
dc.date2014-02-26T17:26:56Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2014-02-26T17:26:56Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2006-07-01
dc.date.accessioned2017-04-05T22:23:36Z
dc.date.available2017-04-05T22:23:36Z
dc.identifierJournal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006.
dc.identifier1040-7294
dc.identifierhttp://hdl.handle.net/11449/25107
dc.identifierhttp://acervodigital.unesp.br/handle/11449/25107
dc.identifier10.1007/s10884-006-9023-4
dc.identifierWOS:000241394900009
dc.identifierhttp://dx.doi.org/10.1007/s10884-006-9023-4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/870036
dc.descriptionFor eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
dc.languageeng
dc.publisherSpringer
dc.relationJournal of Dynamics and Differential Equations
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectdamped wave equation
dc.subjectstrongly damped wave equation
dc.subjectdissipative semigroup
dc.subjectglobal attractor
dc.subjectuniform exponential dichotomy
dc.subjectupper
dc.subjectsemicontinuity
dc.subjectlower semicontinuity
dc.titleUniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
dc.typeOtro


Este ítem pertenece a la siguiente institución