dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMancini, S.
dc.creatorManoel, M.
dc.creatorTeixeira, M. A.
dc.date2014-02-26T17:21:40Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2014-02-26T17:21:40Z
dc.date2014-05-20T14:17:03Z
dc.date2016-10-25T17:39:46Z
dc.date2005-04-01
dc.date.accessioned2017-04-05T22:23:35Z
dc.date.available2017-04-05T22:23:35Z
dc.identifierDiscrete and Continuous Dynamical Systems. Springfield: Amer Inst Mathematical Sciences, v. 12, n. 4, p. 657-674, 2005.
dc.identifier1078-0947
dc.identifierhttp://hdl.handle.net/11449/25106
dc.identifierhttp://acervodigital.unesp.br/handle/11449/25106
dc.identifier10.3934/dcds.2005.12.657
dc.identifierWOS:000228560700006
dc.identifierhttp://dx.doi.org/10.3934/dcds.2005.12.657
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/870035
dc.descriptionIn this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.
dc.languageeng
dc.publisherAmer Inst Mathematical Sciences
dc.relationDiscrete and Continuous Dynamical Systems
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectdivergent diagram of folds
dc.subjectinvolution
dc.subjectsingularities
dc.subjectnormal form
dc.subjectdiscontinuous vector fields
dc.subjectreversible diffeomorphisms
dc.titleDivergent diagrams of folds and simultaneous conjugacy of involutions
dc.typeOtro


Este ítem pertenece a la siguiente institución