dc.creatorArregocés Reinoso, Heli Alfonso
dc.creatorRojano Alvarado, Roberto Eliécer
dc.creatorRestrepo Vázquez, Gloria María
dc.date.accessioned2020
dc.date.accessioned2023-07-28T23:19:15Z
dc.date.accessioned2023-09-06T18:44:31Z
dc.date.available2020
dc.date.available2023-07-28T23:19:15Z
dc.date.available2023-09-06T18:44:31Z
dc.date.created2020
dc.date.created2023-07-28T23:19:15Z
dc.date.issued2020
dc.identifier9789585178335
dc.identifierhttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/749
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8700307
dc.description.abstractEl medio ambiente es el conjunto de las condiciones físicas, geográficas y bioquímicas en las que vivimos. Influye significativamente en todos los aspectos de la sociedad humana, incluida la agricultura, la industria, la salud, los recursos, entre otros. En las últimas décadas, nos hemos visto desafiados por los cambios ambientales inducidos por el hombre, como la deforestación, la destrucción de la capa de ozono, el aumento de las emisiones de gases de efecto invernadero y la contaminación del suelo, el agua y el aire. Proteger el medio ambiente requiere una compresión de los procesos y entender su dinamismo para escoger las medidas correctas de una gama de opciones. La modelización forma una parte crítica de esta tarea. El medio ambiente es un sistema interactivo y complejo que puede categorizarse en sistemas hidrológicos, ecológicos y climáticos. La modelización se refiere al comportamiento de los componentes individuales y sus interacciones, a través de la representación matemática y numérica de los procesos físicos, químicos y biológicos que tienen lugar en el sistema medioambiental. En todo el mundo existe una creciente necesidad de mejorar la calidad de vida de las personas, de comprender los procesos medioambientales y una mayor capacidad para predecir los cambios resultantes de las interferencias de las variaciones naturales o humanas. Numerosos estudios que tratan de la modelización y de sus componentes individuales se han llevado a cabo en el pasado con resultados que han aportado más a esa compresión del mundo natural y estrategias para beneficios de la humanidad.
dc.languagespa
dc.publisherUniversidad de La Guajira
dc.publisherUniversidad de La Guajira
dc.relationAhuja, S., 1996. Evaluation of MESOPUFF-II-Sox Transport and Deposition in the Great Lakes Region. University of Toledo.
dc.relationAmarillo, A.C., Carreras, H.A., 2012. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine. Environ. Pollut. 170, 217–221. https://doi.org/10.1016/j.envpol.2012.07.005
dc.relationAndrade, C.A., 1993. Analysis of the surface-wind speed over the Caribbean Sea. Bull. Sci. Cent. Invest. Hidrogr 1, 33–44.
dc.relationAneja, V.P., Isherwood, A., Morgan, P., 2012. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos. Environ. 54, 496–501. https://doi.org/10.1016/j.atmosenv.2012.02.063
dc.relationAral, M.M., 2010. Environmental modeling and health risk analysis (Acts/Risk), Environmental Modeling and Health Risk Analysis (Acts/Risk). https://doi. org/10.1007/978-90-481-8608-2
dc.relationArregocés, H., Rojano, R., Restrepo, G., Angulo, L., 2016. Using CALPUFF to determine the environmental impact of a coal mine open pit, in: Transactions on Ecology and The Environment. pp. 55–66. https://doi.org/10.2495/AIR160061
dc.relationArregoces, H.A., Mendoza, Y.I., Rojano, R.E., 2018. Evaluación del CALPUFF para Estimar Concentraciones Ambientales de PM 10 de una Cantera en Terrenos Complejos. Inf. tecnológica 29, 131–142.
dc.relationArregocés, H.A., Rojano, R., Angulo, L., Restrepo, G., 2018. Intake Fraction of PM10 from Coal Mine Emissions in the North of Colombia. J. Environ. Public Health 2018.
dc.relationArregoces, H.A., Rojano, R.E., Ângulo, L.C., Restrepo, G.M., 2016. Predicción y Análisis de la Contribución de PM10 desde Pilas de Carbón en una Mina a Cielo Abierto. Inf. Tecnol. 27, 93–102. https://doi.org/10.4067/S0718-07642016000400010
dc.relationBarclay, J., Scire, J., 2011. Generic Guidance and Optimum Model Settings for the CALPUFF Modeling System for Inclusion into the ‘Approved Methods for the Modeling and Assessments of Air Pollutants in NSW, Australia.’
dc.relationBenavides, H.O., Ayala, L., 2010. Análisis Descriptivo de Variables Metereológicas que Influyen en la Calidad del Aire de los Principales Centros Industriales del Pais, IDEAM.
dc.relationBennett, D.H., McKone, T.E., Evans, J.S., Nazaroff, W.W., Margni, M.D., Jolliet, O., Smith, K.R., 2002. Defining intake fraction. Environ. Sci. Technol. 36, 207A-211A. https://doi.org/10.1021/es0222770
dc.relationBonan, G.B., Patton, E.G., Harman, I.N., Oleson, K.W., Finnigan, J.J., Lu, Y., Burakowski, E.A., 2018. Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev. https://doi.org/10.5194/gmd-11-14672018
dc.relationBrabin, B., Smith, M., Milligan, P., Benjamin, C., Dunne, E., Pearson, M., 1994. Respiratory morbidity in Merseyside schoolchildren exposed to coal dust and air pollution. Arch. Dis. Child. 70, 305–12. https://doi.org/10.1136/adc.70.4.305
dc.relationBrunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
dc.relationBurakowski, E., Tawfik, A., Ouimette, A., Lepine, L., Novick, K., Ollinger, S., Zarzycki, C., Bonan, G., 2018. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agric. For. Meteorol. 249, 367–376. https://doi.org/10.1016/j.agrformet.2017.11.030
dc.relationBustamante, P., 2017. Modelación de la propagación de incendios de gran escala producidos por la combustión espontánea en los frentes de explotación en minería de carbón a cielo abierto y diseño de estrategias de apagado. Universidad Nacional de Colombia-Sede Medellín.
dc.relationCanepa, E., Builtjes, P.J.H., 2001. Methodology of model testing and application to dispersion simulation above complex terrain. Int. J. Environ. Pollut. 16, 101–115.
dc.relationChalabi, Z., Milojevic, A., Doherty, R.M., Stevenson, D.S., MacKenzie, I.A., Milner, J., Vieno, M., Williams, M., Wilkinson, P., 2017. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos. Environ. 167, 466–475.
dc.relationChaulya, S.K., 2004. Assessment and management of air quality for an opencast coal mining area. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2003.09.018
dc.relationCurci, G., Cinque, G., Tuccella, P., Visconti, G., Verdecchia, M., Iarlori, M., Rizi, V., 2012. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy. Atmos. Environ. 62, 248–255. https://doi.org/10.1016/j. atmosenv.2012.08.005
dc.relationEETM, N.I., 2000. National Pollutant Inventory, Emission Estimation Technique Manual for Mining and Processing of Non-Metallic Minerals.
dc.relationFonseca-Hernández, M., González-Mayor, Y., Fernández-Valdés, A.C., Cuesta-Santos, O., 2015. Análisis de sensibilidad del campo de viento producido por el modelo de diagnóstico CALMET. Ciencias la Tierra y el Espac. 16, 176–188.
dc.relationForero, A., 1970. Estratigrafía del precretácico en el flanco occidental de la Serrania de Perijá. Geol. Colomb. 7, 7–77.
dc.relationFox, D.G., 1981. Judging Air Quality Model Performance: A Summary of the AMS Workshop on Dispersion Model Performance, Woods Hole, Mass., 8--11 September 1980. Bull. Am. Meteorol. Soc. 62, 599–609.
dc.relationGhannam, K., El-Fadel, M., 2013. Emissions characterization and regulatory compliance at an industrial complex: An integrated MM5/CALPUFF approach. Atmos. Environ. 69, 156–169. https://doi.org/10.1016/j.atmosenv.2012.12.022
dc.relationGhose, M.K., Majee, S.R., 2007. Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environ. Monit. Assess. 130, 17–25. https://doi. org/10.1007/s10661-006-9448-6
dc.relationGhose, M.K., Majee, S.R., 2000. Assessment of dust generation due to opencast coal mining – an indian case study. Environ. Monit. Assess. 61, 255–263. https://doi. org/10.1016/S1352-2310(99)00302-7
dc.relationGreco, S.L., Wilson, A.M., Spengler, J.D., Levy, J.I., 2007. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos. Environ. 41, 1011–1025. https://doi.org/10.1016/j.atmosenv.2006.09.025
dc.relationGulia, S., Kumar, A., Khare, M., 2015. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J. Sci. Ind. Res. 74, 302–307.
dc.relationHendryx, M., Ahern, M.M., 2008a. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–71. https://doi.org/10.2105/AJPH.2007.113472
dc.relationHendryx, M., Ahern, M.M., 2008b. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. Public Health 98, 669–671. https://doi.org/10.2105/AJPH.2007.113472
dc.relationHendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Prev. Med. (Baltim). 49, 355–359. https://doi.org/10.1016/j.ypmed.2009.09.011
dc.relationHendryx, M.S., Ahern, M.M., Nurkiewicz, T.R., 2007. Hospitalization patterns associated with Appalachian coal mining. J. Toxicol. Environ. Heal. Part A 70, 2064–2070. https://doi.org/10.1080/15287390701601236
dc.relationHernández-Garces, A., González, J.A., Casares, J., Turtos, L., Alvarez, L., Jauregui-Haza, U., 2017. Case Study in Jagua Bay at South of Cuba Using a Coupling WRF/ CALMET. Rev. Bras. Meteorol. 32, 659–667.
dc.relationHolmes, N.S., Morawska, L., 2006. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 40, 5902–5928. https://doi.org/http://dx.doi.org/10.1016/j. atmosenv.2006.06.003
dc.relationHorvath, K., Koracin, D., Vellore, R., Jiang, J., Belu, R., 2012. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017432
dc.relationHuang, L., Zhou, L., Chen, J., Chen, K., Liu, Y., Chen, X., Tang, F., 2016. Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study. Chemosphere 147, 180–187. https://doi.org/10.1016/j.chemosphere.2015.12.082
dc.relationHuertas, J.I., Huertas, M.E., Solís, D.A., 2012. Characterization of airborne particles in an open pit mining region. Sci. Total Environ. 423, 39–46. https://doi. org/10.1016/j.scitotenv.2012.01.065
dc.relationHumbert, S., Manneh, R., Shaked, S., Wannaz, C., Horvath, A., Deschênes, L., Jolliet, O., Margni, M., 2009. Assessing regional intake fractions in North America. Sci. Total Environ. 407, 4812–4820. https://doi.org/10.1016/j.scitotenv.2009.05.024
dc.relationHumbert, S., Marshall, J.D., Shaked, S., Spadaro, J. V., Nishioka, Y., Preiss, P., McKone, T.E., Horvath, A., Jolliet, O., 2011. Intake fraction for particulate matter: Recommendations for life cycle impact assessment. Environ. Sci. Technol. 45, 4808–4816. https://doi.org/10.1021/es103563z
dc.relationIDEAM, 2016. Informe del estado de la Calidad del Aire en Colombia 2011-2015, Comité de Comunicaciones y Publicaciones del IDEAM.
dc.relationJ., Fox t. (U.S. Environmental Protection Agency, Research Triangle Park, N., 2009. Clarification on EPA-FLM Recommended Settings for CALMET.
dc.relationJiménez, P., Jorba, O., Parra, R., Baldasano, J.M., 2006. Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2005.12.060
dc.relationJones, T., Blackmore, P., Leach, M., B??ruB??, K., Sexton, K., Richards, R., 2002. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K. Environ. Monit. Assess. 75, 293–312. https://doi. org/10.1023/A:1014808419171
dc.relationKhandan, N., 2001. Modeling tools for environmental engineers and scientists. CRC Press.
dc.relationKumar, A., Dixit, S., Varadarajan, C., Vijayan, A., Masuraha, A., 2006. Evaluation of the AERMOD dispersion model as a function of atmospheric stability for an urban area. Environ. Prog. 25, 141–151. https://doi.org/10.1002/ep.10129
dc.relationLamancusa, C., Parvez, F., Wagstrom, K., 2017. Spatially resolved intake fraction estimates for primary and secondary particulate matter in the United States. Atmos. Environ. 150, 229–237. https://doi.org/10.1016/j.atmosenv.2016.11.010
dc.relationLin, K.M., Juang, J.Y., Shiu, Y.W., Chang, L.F.W., 2016. Estimating the bowen ratio for application in air quality models by integrating a simplified analytical expression with measurement data. J. Appl. Meteorol. Climatol. https://doi.org/10.1175/ JAMC-D-15-0080.1
dc.relationLiu, M.-K., Yocke, M.A., 1980. Siting of wind turbine generators in complex terrain. J. Energy 4, 10–16.
dc.relationMacIntosh, D.L., Stewart, J.H., Myatt, T. a., Sabato, J.E., Flowers, G.C., Brown, K.W., Hlinka, D.J., Sullivan, D. a., 2010. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmos. Environ. 44, 262–270. https://doi. org/10.1016/j.atmosenv.2009.09.023
dc.relationMADS, 2013. Programa de reducción de la contaminación del aire para las áreas fuente de la zona carbonífera del Cesar. Valleduprar.
dc.relationMaleki, H., Sorooshian, A., Goudarzi, G., Nikfal, A., Baneshi, M.M., 2016. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 22, 135–140. https://doi.org/10.1016/j.aeolia.2016.08.006
dc.relationMandal, K., Kumar, A., Tripathi, N., Singh, R.S., Chaulya, S.K., Mishra, P.K., Bandyopadhyay, L.K., 2012. Characterization of different road dusts in opencast coal mining areas of India. Environ. Monit. Assess. 184, 3427–3441. https://doi.org/10.1007/ s10661-011-2197-1
dc.relationMandell, G.L., 2005. Mandell, Douglas, and Bennett&apos´s principles and practice of infectious diseases. karger.com.
dc.relationMinisterio de Minas y Energía, 2018. Análisis Minero [WWW Document]. Comport. la Prod. Minera en Colomb. URL https://www.minminas.gov.co/analisis-minero (accessed 1.21.18).
dc.relationMueller, S.F., Mallard, J.W., Mao, Q., Shaw, S.L., 2015. Variability of natural dust erosion from a coal pile. J. Appl. Meteorol. Climatol. 54, 3–14. https://doi.org/10.1175/ JAMC-D-14-0126.1
dc.relationMuñoz, E., Busalacchi, A.J., Nigam, S., Ruiz-Barradas, A., 2008. Winter and summer structure of the Caribbean low-level jet. J. Clim. 21, 1260–1276. https://doi.org/10.1175/2007JCLI1855.1
dc.relationMuñoz, F., Carvalho, M.S., 2009. Effect of exposure time to PM10 on emergency admissions for acute bronchitis. Cad. Saude Publica 25, 529–539.
dc.relationOleniacz, R., Rzeszutek, M., 2018. Intercomparison of the CALMET/CALPUFF Modeling System for Selected Horizontal Grid Resolutions at a Local Scale: A Case Study of the MSWI Plant in Krakow, Poland. Appl. Sci. 8, 2301.
dc.relationOstro, B., 1995. 95/05299 Estimating the health effects of air pollutants: A method with an application to Jakarta, Fuel and Energy Abstracts. https://doi.org/10.1016/0140-6701(95)97038-L
dc.relationOtero, A., others, 2013. Rio Rancheria: Entre la economia, la biodiversidad y la cultura. Doc. Trab. sobre Econ. Reg. Banco la República. Cent. Estud. Económicos Reg. CEER. Cart.
dc.relationPatra, A.K., Gautam, S., Kumar, P., 2016. Emissions and human health impact of particulate matter from surface mining operation—A review. Environ. Technol. Innov. 5, 233–249. https://doi.org/10.1016/j.eti.2016.04.002
dc.relationPisoni, E., Albrecht, D., Mara, T.A., Rosati, R., Tarantola, S., Thunis, P., 2018. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmos. Environ. 183, 84–93.
dc.relationPope, C.A., Bates, D. V, Raizenne, M.E., 1995. Health effects of particulate air pollution: time for reassessment? Environ. Health Perspect. 103, 472–480. https://doi. org/10.1289/ehp.95103472
dc.relationPope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–41. https://doi.org/10.1001/ jama.287.9.1132
dc.relationPope, C.A., Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution : Lines that Connect. Air Waste Manag. Assoc. 56, 709–742.
dc.relationPope III, C.A., Hill, R.W., Villegas, G.M., 1999. Particulate Air Pollution and Daily Mortality on Utah’s Wasatch Front. Environ. Health Perspect. 107, 567–573. https:// doi.org/10.1289/ehp.99107567
dc.relationPosada, B., Henao, W., Guzman, G., 2009. Diagnóstico de la erosión en la zona costera del Caribe colombiano. Diagnóstico la erosión en la Zo. costera del Caribe Colomb. 124. https://doi.org/10.1159/000193188
dc.relationPoveda, G., 2004. La Hidroclimatología De Colombia: Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna. Rev. la Acad. Colomb. Ciencias XXVIII, 201–222.
dc.relationPoveda, G., Mesa, O.J., Salazar, L.F., Arias, P.A., Moreno, H.A., Vieira, S.C., Agudelo, P.A., Toro, V.G., Alvarez, J.F., 2005. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather Rev. 133, 228–240. https://doi.org/10.1175/ MWR-2853.1
dc.relationProspero, J.M., 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. 104, 15917. https://doi.org/10.1029/1999JD900072
dc.relationRadelli, L., Forero, A., 1970. Acerca de la geologia de la Serrania de Perijá entre Codazzi y Villanueva (Magdalena-Guajira, Colombia). Geol. Colomb. 7, 7–77.
dc.relationRamírez Builes, V.H., Jaramillo Robledo, Á., 2009. Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. Cenicafé.
dc.relationSamoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., Katsouyanni, K., 2008. Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environ. Health Perspect. 116, 1480–1486. https://doi. org/10.1289/ehp.11345
dc.relationSánchez-Triana, E., Ahmed, K., Awe, Y., 2007. Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia, Banco Mund. ed. The International Bank for Reconstruction and Development/ The World Bank, Washington, DC.
dc.relationSantana, M.E.M., 2017. Parámetros de rugosidad representativos de terrenos naturales.
dc.relationSchutz, F., Massuquetti, A., Alves, T.W., 2013. Demanda e oferta energética : uma perspectiva mundial e nacional para o etanol. REGET 16, 3167–3186.
dc.relationScire, J.S., Strimaitis, D.G., Yamartino, R.J., 2000. A User ’ s Guide for the CALPUFF Dispersion Model. Eearth Tech. Inc.
dc.relationSimon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61, 124–139.
dc.relationSong, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 Mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j. scitotenv.2016.07.115
dc.relationSud, Y.C., Shukla, J., Mintz, Y., Sud, Y.C., Shukla, J., Mintz, Y., 1988. Influence of Land Surface Roughness on Atmospheric Circulation and Precipitation: A Sensitivity Study with a General Circulation Model. J. Appl. Meteorol. 27, 1036–1054. https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2
dc.relationSydow a, 2010. Encyclopedia of Life Support Systems, UNESCO. Elsevier.
dc.relationTartakovsky, D., Broday, D.M., Stern, E., 2013. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ. Pollut. 179, 138–145. https://doi.org/10.1016/j.envpol.2013.04.023
dc.relationTartakovsky, D., Stern, E., Broday, D.M., 2016. Dispersion of TSP and PM10 emissions from quarries in complex terrain. Sci. Total Environ. 542, 946–954. https://doi. org/10.1016/j.scitotenv.2015.10.133
dc.relationToraño, J.A., Rodriguez, R., Diego, I., Rivas, J.M., Pelegry, A., 2007. Influence of the pile shape on wind erosion CFD emission simulation. Appl. Math. Model. 31, 2487–2502. https://doi.org/10.1016/j.apm.2006.10.012
dc.relationTrivedi, R., Mondal, A., Chakraborty, M.K., Tewary, B.K., 2010. A statistical analysis of ambient air quality around 969 opencast coal projects in wardha valley coalfields, western coal fields limited, India. Indian J. Environ. Prot. 30.
dc.relationTschanz, C.M., Marvin, R.F., Cruz, B.J., Mehnert, H.H., Cebula, G.T., 1974. Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284.
dc.relationTurner, D.B., 1994. Workbook of Atmosphere Dispersion Estimates 1994, 1st ed. Lewis publishers, Chapel Hil North Carolina
dc.relationUPME, 2017. Informe Departamental Minero-La Guajira.
dc.relationUSEPA, 1995. Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors [WWW Document]. URL https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors
dc.relationValdés, D., Silverio, A.Q., González, Y., Santos, O.C., Díaz, A.S., Pinar, U. De, Técnicas, F.D.C., Física, D. De, Río, P., Pinar, U. De, Técnicas, F.D.C., Matemáticas, D. De, Río, P., 2015. Variación de la estabilidad y altura de la capa de mezcla en la ciudad de Pinar del Río : su relación con condiciones sinópticas. Rev. Bras. Meteorol. 30, 1–15. https://doi.org/10.1590/0102-778620140014
dc.relationVan Ulden, a. P., Holtslag, a. a. M., 1985. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications. J. Clim. Appl. Meteorol. https://doi.org/10 .1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2
dc.relationvan Zelm, R., Huijbregts, M. a J., den Hollander, H. a., van Jaarsveld, H. a., Sauter, F.J., Struijs, J., van Wijnen, H.J., van de Meent, D., 2008. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 42, 441–453. https://doi.org/10.1016/j.atmosenv.2007.09.072
dc.relationVenegas, L.E., Mazzeo, N.A., 2012. La velocidad del viento y la dispersión de contaminantes en la atmósfera. Argentina Cons. Nac. Investig. Cient. y Técnicas.
dc.relationWHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization.
dc.relationZhou, H., He, J., Zhao, B., Zhang, L., Fan, Q., Lü, C., Dudagula, Liu, T., Yuan, Y., 2016. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China. Atmos. Res. 178–179, 102–113. https://doi.org/10.1016/j.atmosres.2016.03.019
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightsCopyright - Universidad de La Guajira, 2020
dc.titleModelación de la calidad del aire utilizando modelos tipo Puff en el departamento de La Guajira
dc.typeLibro


Este ítem pertenece a la siguiente institución