dc.contributorCubillán Acosta, Néstor José
dc.contributorGrupo EFIPRA
dc.creatorDe Luque Gómez, Julio Cosy
dc.date.accessioned2022-12-01T19:59:59Z
dc.date.accessioned2023-09-06T18:43:59Z
dc.date.available2022-12-01T19:59:59Z
dc.date.available2023-09-06T18:43:59Z
dc.date.created2022-12-01T19:59:59Z
dc.date.issued2017
dc.identifierhttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/604
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8700185
dc.description.abstractEn este trabajo se dedujo un nuevo conjunto de ecuaciones de diferencias finitas basadas en la serie de Taylor para el cálculo de propiedades ópticas no lineales de sistemas moleculares. Las expresiones se obtuvieron a partir de las ecuaciones generalizadas de diferencias finitas con grado y exactitud arbitrarios, corrigiendo el orden de magnitud del error de truncamiento en las componentes no-axiales de las hiperpolarizabilidades. Las mismas se validaron calculando las propiedades ópticas no lineales en 2 grupos de moléculas cuyos valores de primera y segunda hiperpolarizabilidad se han medido experimentalmente. Las moléculas fueron la 4-nitro-anilina, 4-ciano-fenol, 4,4’-amino-nitro-estilbeno y 4,4’-ciano-metoxi-estilbeno. Los valores de energía de cada sistema en función del campo eléctrico se calculó por métodos de teoría del funcional de la densidad. Los resultados se compararon con los obtenidos con las ecuaciones de Kurtz y col. [H.A. Kurtz et. al., J. Comp. Chem., 1990, 11(1), 82], y Kamada y col. [K. Kamada et al., J. Phys. Chem. A, 2000, 104(20), 4723]. El mejor desempeño en comparación con los reportes teóricos se obtuvieron con los funcionales HSEH1PBE, MN12SX y N12SX. Con relación al experimento los funcionales HSEH1PBE y N12SX, mostraron los mejores valores. En conclusión, las ecuaciones generalizadas representan una alternativa viable para el cálculo de la primera ( ) y segunda ( ) hiperpolarizabilidad con precisión y exactitud ajustables.
dc.description.abstractIn this work, a new set of Taylor series based finite differences equations were obtained to calculate nonlinear optical properties of molecular systems. The expressions were derived from the generalized finite differences with arbitrary precision and accuracy. The order of magnitude of truncation in non-axial components of hyperpolarizabilities was corrected. The validation were carried-out by calculating the nonlinear optical properties to 2 set of molecules with experimental values of first and second-order hyperpolarizability available. The molecules were 4-nitro-aniline, 4-cyano-phenol, 4,4’-amino-nitro-stilbene y 4,4’-cyano-methoxy-stilbene. The fielddependent energy was obtained by Density Functional Theory. The results were compared with the hyperpolarizabilties with the Kurtz et al. [H.A. Kurtz et. al., J. Comp. Chem., 1990, 11(1), 82], and Kamada et al. [K. Kamada et al., J. Phys. Chem. A, 2000, 104(20), 4723]. The best performance was obtained with functionals HSEH1PBE, MN12SX y N12SX in comparison with the CCSD values. The functionals HSEH1PBE y N12SX, show best values compared with the experiments. In summary, the generalized equations represent an alternative in the first ( ) and second ( ) hyperpolarizability calculations with arbitrary precision and accuracy.
dc.languagespa
dc.publisherUniversidad de La Guajira
dc.publisherSUE CARIBE
dc.publisherDistrito Especial, Turístico y Cultural de Riohacha
dc.publisherMaestría en Ciencias Físicas
dc.relationRamzi Albadarneh, Nabil Shawagfeh, and Zaer Abo-Hammour. General (n+1)-explicit finite difference formulas with proof. Applied Mathematical Sciences, 6(20):995–1009, 2012.
dc.relationAndrea Alparone. Electron correlation effects and density analysis of the firstorder hyperpolarizability of neutral guanine tautomers. Journal of Molecular Modeling, 19(8):3095–3102, Aug 2013
dc.relationAndrea Alparone, Heribert Reis, and Manthos G. Papadopoulos. Theoretical investigation of the (hyper)polarizabilities of pyrrole homologues c4h4xh (x = n, p, as, sb, bi). a coupled-cluster and density functional theory study. The Journal of Physical Chemistry A, 110(17):5909–5918, 2006. PMID: 16640389
dc.relationN. Arul Murugan, Jacob Kongsted, Zilvinas Rinkevicius, Keestutis Aidas, Kurt V. Mikkelsen, and Hans Agren. Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. Phys. Chem. Chem. Phys., 13:12506–12516, 2011.
dc.relationRodney J. Bartlett and George D. Purvis. Molecular hyperpolarizabilities. i. theoretical calculations including correlation. Phys. Rev. A, 20:1313–1322, Oct 1979.
dc.relationSean Bonness, Hitoshi Fukui, Kyohei Yoneda, Ryohei Kishi, Benoit Champagne, Edith Botek, and Masayoshi Nakano. Theoretical investigation on the second hyperpolarizabilities of open-shell singlet systems by spin-unrestricted density functional theory with long-range correction: Range separating parameter dependence. Chemical Physics Letters, 493(1):195 – 199, 2010.
dc.relationJ. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce. Third-order nonlinear optical response in organic materials: Theoretical and experimental aspects. Chemical Reviews, 94(1):243–278, 1994.
dc.relationFelipe A. Bulat, Alejandro Toro-Labbe, Benoit Champagne, Bernard Kirtman, and Weitao Yang. Density-functional theory (hyper)polarizabilities of pushpull -conjugated systems: Treatment of exact exchange and role of correlation. The Journal of Chemical Physics, 123(1):014319, 2005.
dc.relationFrederic Castet, Mireille Blanchard-Desce, Frederic Adamietz, Yevgen M. Poronik, Daniel T. Gryko, and Vincent Rodriguez. Experimental and theoretical investigation of the first-order hyperpolarizability of octupolar merocyanine dyes. ChemPhysChem, 15(12):2575–2581, 2014.
dc.relationFrederic Castet, Elena Bogdan, Aurelie Plaquet, Laurent Ducasse, Benoit Champagne, and Vincent Rodriguez. Reference molecules for nonlinear optics: A joint experimental and theoretical investigation. The Journal of Chemical Physics, 136(2):024506, 2012.
dc.relationFrederic Castet, Vincent Rodriguez, Jean-Luc Pozzo, Laurent Ducasse, Aurelie Plaquet, and Benoit Champagne. Design and characterization of molecular nonlinear optical switches. Accounts of Chemical Research, 46(11):2656–2665, 2013. PMID: 23865890.
dc.relationJeng-Da Chai and Martin Head-Gordon. Systematic optimization of longrange corrected hybrid density functionals. The Journal of Chemical Physics, 128(8):084106, 2008.
dc.relationBenoit Champagne, Edith Botek, Masayoshi Nakano, Tomoshige Nitta, and Kizashi Yamaguchi. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell p-conjugated systems. The Journal of Chemical Physics, 122(11):114315, 2005.
dc.relationBenoit Champagne, Eric A. Perpete, Stan J. A. van Gisbergen, Evert-Jan Baerends, Jaap G. Snijders, Chirine Soubra-Ghaoui, Kathleen A. Robins, and Bernard Kirtman. Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains. The Journal of Chemical Physics, 109(23):10489–10498, 1998.
dc.relationLap Tak Cheng, Wilson Tam, Seth R. Marder, Albert E. Stiegman, Geert Rikken, and Charles W. Spangler. Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. a study of conjugation dependences. The Journal of Physical Chemistry, 95(26):10643–10652, 1991.
dc.relationMarta Choluj, Justyna Kozlowska, and Wojciech Bartkowiak. Benchmarking dft methods on linear and nonlinear electric properties of spatially confined molecules. International Journal of Quantum Chemistry, 0(0):e25666, 2018.
dc.relationJacqueline M. Cole. Organic materials for second-harmonic generation: advances in relating structure to function. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 361(1813):2751–2770, 2003.
dc.relationLarry R. Dalton, David Lao, Benjamin C. Olbricht, Stephanie Benight, Denise H. Bale, Joshua A. Davies, Todd Ewy, Scott R. Hammond, and Philip A. Sullivan. Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices. Optical Materials, 32(6):658 – 668, 2010. 2nd International Conference on Functional Materials and Devices.
dc.relationSanto Di Bella. Second-order nonlinear optical properties of transition metal complexes. Chem. Soc. Rev., 30:355–366, 2001.
dc.relationThom Dunning. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2):1007–1023, 1989.
dc.relationJ.H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg, 2012.
dc.relationBengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comp., 51:699–706, 1988.
dc.relationMichael J. Frisch, John A. Pople, and J. Stephen Binkley. Self-consistent molecular orbital methods 25. supplementary functions for gaussian basis sets. The Journal of Chemical Physics, 80(7):3265–3269, 1984.
dc.relationAlejandro J. Garza, Gustavo E. Scuseria, Sher B. Khan, and Abdullah Mohamed Asiri. Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials. Chemical Physics Letters, 575(Supplement C):122 – 125, 2013.
dc.relationF.L. Gu, Y. Aoki, M. Springborg, and B. Kirtman. Calculations on nonlinear optical properties for large systems: The elongation method. SpringerBriefs in Molecular Science. Springer International Publishing, 2014.
dc.relationJ. Guthmuller and D. Simon. Water solvent effect on the first hyperpolarizability of p-nitrophenol and p-nitrophenylphosphate: A time-dependent density functional study. The Journal of Chemical Physics, 124(17):174502, 2006.
dc.relationG. J. T. Heesink, A. G. T. Ruiter, N. F. van Hulst, and B. Bölger. Determination of hyperpolarizability tensor components by depolarized hyper rayleigh scattering. Phys. Rev. Lett., 71:999–1002, Aug 1993.
dc.relationThomas M. Henderson, Artur F. Izmaylov, Giovanni Scalmani, and Gustavo E. Scuseria. Can short-range hybrids describe long-range-dependent properties? The Journal of Chemical Physics, 131(4):044108, 2009.
dc.relationP. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov 1964.
dc.relationYang-Yang Hu, Shi-Ling Sun, Shabbir Muhammad, Hong-Liang Xu, and Zhong-Min Su. How the number and location of lithium atoms affect the first hyperpolarizability of graphene. The Journal of Physical Chemistry C, 114(46):19792–19798, 2010.
dc.relationPhilip Kaatz, Elizabeth A. Donley, and David P. Shelton. A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. The Journal of Chemical Physics, 108(3):849–856, 1998.
dc.relationF. Kajzar and J. Messier. Third-harmonic generation in liquids. Phys. Rev. A, 32:2352–2363, Oct 1985. [51] Kenji Kamada, Minoru Ueda,
dc.relationDavid R. Kanis, Mark A. Ratner, and Tobin J. Marks. Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chemical Reviews, 94(1):195–242, 1994.
dc.relationIshtiaq Rasool Khan and Ryoji Ohba. Closed-form expressions for the finite difference approximations of first and higher derivatives based on taylor series. Journal of Computational and Applied Mathematics, 107(2):179 – 193, 1999
dc.relationIshtiaq Rasool Khan and Ryoji Ohba. New finite difference formulas for numerical differentiation. Journal of Computational and Applied Mathematics, 126(1):269 – 276, 2000.
dc.relationIshtiaq Rasool Khan, Ryoji Ohba, and Noriyuki Hozumi. Mathematical proof of closed form expressions for finite difference approximations based on taylor series. Journal of Computational and Applied Mathematics, 150(2):303 – 309, 2003.
dc.relationBernard Kirtman, Sean Bonness, Alejandro Ramirez-Solis, Benoit Champagne, Hironori Matsumoto, and Hideo Sekino. Calculation of electric dipole (hyper)polarizabilities by long-range-correction scheme in density functional theory: A systematic assessment for polydiacetylene and polybutatriene oligomers. The Journal of Chemical Physics, 128(11):114108, 2008.
dc.relationW. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
dc.relationVarun Kundi and Pompozhi Protasis Thankachan. New trans-stilbene derivatives with large two-photon absorption cross-section and non-linear optical susceptibility values - a theoretical investigation. Phys. Chem. Chem. Phys., 17:12299–12309, 2015.
dc.relationH. A. Kurtz, J. J.P. Stewart, and K. M. Dieter. Calculation of the nonlinear optical properties of molecules. J. Comput. Chem., 11(1):82–87, January 1990.
dc.relationS. K. Kurtz and T. T. Perry. A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics, 39(8):3798–3813, 1968.
dc.relationSpike T. Lee, Jun Liu, and Hai-Wei Sun. Combined compact difference scheme for linear second-order partial differential equations with mixed derivative. Journal of Computational and Applied Mathematics, 264(Supplement C):23 – 37, 2014.
dc.relationJianping Li. General explicit difference formulas for numerical differentiation. Journal of Computational and Applied Mathematics, 183(1):29 – 52, 2005.
dc.relationIsmael Lopez-Duarte, James E. Reeve, Javier Perez-Moreno, Igor Boczarow, Griet Depotter, Jan Fleischhauer, Koen Clays, and Harry L. Anderson. “pushno- pull” porphyrins for second harmonic generation imaging. Chem. Sci., 4:2024–2027, 2013
dc.relationGeorge Maroulis. Hyperpolarizability of h2o. The Journal of Chemical Physics, 94(2):1182–1190, 1991.
dc.relationStefan Meister, Dawid Schweda, Marcus Dziedzina, Ronny Juhre, Aws Al- Saadi, B´’ulent Franke, Bernd Grimm, Sigurd Schrader, Stephanie Benight, Denise Bale, Ilya Kosilkin, Larry, Dalton, and Hans Eichler. Filters and electrooptic modulators on fiber end-faces, 2011.
dc.relationAhmed A. K. Mohammed, Peter A. Limacher, and Benoit Champagne. Finding optimal finite field strengths allowing for a maximum of precision in the calculation of polarizabilities and hyperpolarizabilities. Journal of Computational Chemistry, 34(17):1497–1507, 2013.
dc.relationAhmed A.K. Mohammed, Peter A. Limacher, and Paul W. Ayers. Predicting optimal finite field strengths for calculating the first and second hyperpolarizabilities using simple molecular descriptors. Chemical Physics Letters, 682:160 – 167, 2017.
dc.relationI. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers. Measurement of first hyperpolarizabilities by hyper-rayleigh scattering. Review of Scientific Instruments, 67(4):1445–1453, 1996.
dc.relationAndrzej Sadlej. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect. Czech. Chem. Commun., 53:1995–2016, 1988.
dc.relationAndrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. Theoretica chimica acta, 79(2):123–140, Mar 1991
dc.relationAndrzej J. Sadlej. Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. Theoretica chimica acta, 81(4):339–354, Jul 1992.
dc.relationHideo Sekino, Yasuyuki Maeda, Muneaki Kamiya, and Kimihiko Hirao. Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction. The Journal of Chemical Physics, 126(1):014107, 2007.
dc.relationHumberto Soscún, Olga Castellano, Yaneth Bermúdez, Carlos Toro, Nestor Cubillán, Alan Hinchliffe, and Xuan Nguyen Phu. B3lyp study of the dipole moment and the static dipole (hyper)polarizabilities of para-nitroaniline in gas phase. International Journal of Quantum Chemistry, 106(5):1130–1137, 2006.
dc.relationKyrill Yu Suponitsky and Artam E. Masunov. Supramolecular step in design of nonlinear optical materials: Effect of – stacking aggregation on hyperpolarizability. The Journal of Chemical Physics, 139(9):094310, 2013.
dc.relationM.E. Thompson, P.E. Djurovich, S. Barlow, and S. Marder. Organometallic complexes for optoelectronic applications. In D. Michael P. Mingos and Robert H. Crabtree, editors, Comprehensive Organometallic Chemistry {III}, pages 101 – 194. Elsevier, Oxford, 2007.
dc.relationThierry Verbiest, Stephan Houbrechts, Martti Kauranen, Koen Clays, and Andre Persoons. Second-order nonlinear optical materials: recent advances in chromophore design. J. Mater. Chem., 7:2175–2189, 1997
dc.relationVon Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer II. A New Dimension to Quantum Chemistry. Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory, volume 43. Oxford University Press, Oxford, 1994.
dc.relationG.C. Yang, S.Q. Shi, W. Guan, L. Fang, and Z.M. Su. Hyperpolarizabilities of para-nitroaniline and bis[4-(dimethylamino)phenyl] squaraine: The effects of functional/basis set based on tddft-sos method. Journal of Molecular Structure: THEOCHEM, 773(1):9 – 14, 2006.
dc.relationYan Zhao and Donald G. Truhlar. The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1):215–241, May 2008.
dc.relationRong-Lin Zhong, Hong-Liang Xu, Shi-Ling Sun, Yong-Qing Qiu, and Zhong- Min Su. The excess electron in a boron nitride nanotube: Pyramidal nbo charge distribution and remarkable first hyperpolarizability. Chemistry - A European Journal, 18(36):11350–11355.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsDerecho Reservados Universidad de La Guajira
dc.titleEcuaciones generalizadas de diferencias finitas basadas en series de Taylor para el cálculo de propiedades ópticas no lineales
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución