dc.contributorRojano Alvarado, Roberto
dc.creatorVengoechea, Alejandra
dc.date.accessioned2022-12-06T15:02:08Z
dc.date.accessioned2023-09-06T18:43:43Z
dc.date.available2022-12-06T15:02:08Z
dc.date.available2023-09-06T18:43:43Z
dc.date.created2022-12-06T15:02:08Z
dc.date.issued2019
dc.identifierhttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/620
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8700136
dc.description.abstractLos aerosoles atmosféricos, afectan la calidad del aire y pueden llegar a representar un problema serio de salud en las personas. La Guajira es uno de los departamentos con más altos índices de infecciones respiratorias agudas en menores de 5 años, y específicamente en el distrito de Riohacha éstas representan una de las principales causas de defunción. En estudios previos se ha caracterizado la concentración y composición química del material particulado PM10 en exteriores de Riohacha, sin embargo, no existen datos sobre la calidad del aire en interiores. En la presente investigación se determinó la concentración y composición química de los aerosoles en el material particulado PM10 de exteriores e interiores de viviendas del área urbana de Riohacha. Para ello se eligieron los siguientes puntos de muestreo en la ciudad: Bienestar Familiar (BF), Buganvilla (BU), Muelle Turístico (MT), Aeropuerto (AE), Centro Cultural (CC), Centro Comercial Sushiimma (CS) y Centro de Convenciones Anas Mai (AM). Las concentración promedio en todas las estaciones muestreadas fue de 28,466 μg/m3, el sitio con mayor concentración promedio exterior fue BF con 56,068 μg/m3, seguido de MT con 52,537 μg/m3 y BU exterior con 51,355 μg/m3, el valor más bajo lo presentó AE en el interior con 5,054 μg/m3. En los sitios de muestreo ubicados a orilla de playa los valores de concentración máxima los presento MT con 52,537 μg/m3 y los valores menores los presentó CC con 36,317 μg/m3. Entre los catorce elementos químicos analizados, los cuatro más abundantes fueron el Ca con promedio de 6,812 μg/m3, seguido del Na con 5,3 μg/m3, K con 3,6 μg/m3 y el Mg con 1,325 μg/m3. El aporte de aerosoles marinos en la zona de orilla de playa comprende entre el 4 y 10% y en la zona urbana hasta el 7%. Los resultados obtenidos muestran que calidad del aire en Riohacha cumple con la normatividad colombiana vigente, por lo que los aerosoles marinos no representan un problema serio a la salud de la población.
dc.description.abstractAtmospheric aerosols affect air quality and can represent a serious health problem in people. La Guajira is one of the departments with the highest incident numbers of acute respiratory infections in children under 5 years of age, and specifically in the district of Riohacha, these represent one of the main causes of death. Previous studies have characterized the concentration and chemical composition of particulate material PM10 in Riohacha, however, there is no reported data on the air quality in indoors. In the present investigation, the concentration and chemical composition of the aerosols in the particulate matter PM10 was determined in indoors and outdoors of houses located in the urban area of Riohacha. To do this, the following sampling points were chosen in the city: Family Welfare (BF), Bougainvillea (BU), Tourist Wharf (MT), Airport (AE), Cultural Center (CC), Sushiimma Shopping Center (CS) and Shopping Center. Anas Mai Conventions (AM). The average concentration in all the sampled stations was 28,466 μg / m3, the site with the highest outdoor average concentration was BF with 56,068 μg / m3, followed by MT with 52,537 μg / m3 and outdoor BU with 51,355 μg / m3, the lowest value was obtained in indoor AE with 5,054 μg / m3. In the sampling points located at the beach edge, the maximum concentration values were obtained in MT with 52,537 μg / m3 and the lowest one was obtained in CC with 36,317 μg / m3. Among the fourteen chemical elements analyzed, the four most abundant were Ca with an average of 6,812 μg / m3, followed by Na with 5.3 μg / m3, after that K with 3.6 μg / m3 and Mg with 1,325 μg / m3 The contribution of marine aerosols in the beach shore area includes between 4 and 10% and in the urban area up to 7%. The results obtained show that air quality in Riohacha satisfies the current Colombian regulations, so that marine aerosols do not represent a serious problem to the health of the population.
dc.languagespa
dc.publisherUniversidad de La Guajira
dc.publisherSUE CARIBE
dc.publisherDistrito Especial, Turístico y Cultural de Riohacha
dc.publisherMaestría en Ciencias Ambientales
dc.relationAgilent Technologies. (2016). Microwave Plasma Atomic Emission Spectroscopy. Retrieved from file:///D:/Escritorio/5991-7282EN_MP-AES-eBook.pdf
dc.relationAirmetric. (2018). Manual, Operation, MiniVol TAS. Retrieved from www.airmetrics.com/downloads.html
dc.relationAlcaldía de Riohacha. (2016). Riohacha incluyente y sostenible 2016 - 2019, 52. Retrieved from https://goo.gl/Y2omU6
dc.relationAlcaldía Mayor de Riohacha. (2011). Plan de desarrollo Riohacha 2008-2011. Retrieved from http://riohacha-laguajira.gov.co/apc-aa-files/31313961383035323161663131346635/PLAN_DE_DESARROLLO_POR_UNA_NUEVA_RIOHACHA_2008___2011.pdf
dc.relationAlcántara, J., Chico, B., Díaz, I., y Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corrosion Science, 97, 74–88. https://doi.org/10.1016/j.corsci.2015.04.015
dc.relationAllen, D. (2002). Fine particulate matter concentrations, compositions, and sources in southeast Texas: State of the science and critical research needs, version 1.0, report. Univ. of Tex. at Austin, Austin. University of Texas. Retrieved from http://scholar.google.com/scholar?hl=enybtnG=Searchyq=intitle:Particulate+Matter+Concentrations,+Compositions,+and+Sources+in+Southeast+Texas:+State+of+the+Science+and+Critical+Research+Needs#0%5Cnhttp://scholar.google.com/scholar?hl=enybtnG=Searchyq=intitl
dc.relationAránguez, E., Ordóñez, J. M., Serrano, J., Aragonés, N., Fernández-Patier, R., Gandarillas, A., y Galán, I. (1999). Contaminantes atmosféricos y su vigilancia. Revista Española de Salud Pública, 73(2), 123–132. https://doi.org/10.1590/S1135-57271999000200003
dc.relationAutrup, H. (2010). Ambient air pollution and adverse health effects. Procedia - Social and Behavioral Sciences, 2(5), 7333–7338. https://doi.org/10.1016/j.sbspro.2010.05.089
dc.relationBergin, M. H., Tripathi, S. N., Jai Devi, J., Gupta, T., Mckenzie, M., Rana, K. S., … Schauer, J. J. (2015). The discoloration of the Taj Mahal due to particulate carbon and dust deposition. Environmental Science and Technology, 49(2), 808–812. https://doi.org/10.1021/es504005q
dc.relationCáceres, D., Adonis, M., Retamal, C., Ancic, P., Valencia, M., Ramos, X., … Gil, L. (2001). Contaminación intradomiciliaria en un sector de extrema pobreza de la comuna de La Pintana. Revista Médica de Chile. scielocl.
dc.relationCheng, Z., Jiang, J., Farjardo, O., Wang, S., y Hao, J. (2013). Characteristics and health impacts of particulate matter pollution in China (2001-2011). Atmospheric Environment, 65, 186 – 194
dc.relationDewangan, S., Pervez, S., Chakrabarty, R., Watson, J. G., Chow, J. C., Pervez, Y., … Rai, J. (2016). Study of carbonaceous fractions associated with indoor PM2.5/PM10 during Asian cultural and ritual burning practices. Building and Environment, 106, 229–236. https://doi.org/http://dx.doi.org/10.1016/j.buildenv.2016.06.006
dc.relationDouglas, D., Arden, P. C., Xiping, X., D., S. J., H., W. J., E., F. M., … E., S. F. (1993). An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine, 329(24), 1753–1759. https://doi.org/10.1056/NEJM199312093292401
dc.relationEcheverria, C., Tsembame, J., y Lopéz. (2006). Influencia del aerosol marino en la corrosión atmosférica.
dc.relationEPA. (1998). Documento de Técnicas de Control de Materia Particulada Fina Proveniente de Fuentes Estacionarias
dc.relationEPA. (1999). Handbook for criteria pollutant inventory development: A beginner’s guide for point and area sources. United States: Office of Air Quality Planning and Standards
dc.relationEPA. (2007). Indoor Air Pollution and Health. Enviromental Protection Agency (Vol. 57). https://doi.org/10.1136/oem.57.4.285f
dc.relationEPA. (2017). AP-42: Compilation of Air Emissions Factors. Retrieved from https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors
dc.relationEscobedo, L. E., Champion, W. M., Li, N., y Montoya, L. D. (2014). Indoor air quality in Latino homes in Boulder, Colorado. Atmospheric Environment, 92, 69–75. https://doi.org/10.1016/j.atmosenv.2014.03.043
dc.relationFan, S. M. (2013). Modeling of observed mineral dust aerosols in the arctic and the impact on winter season low-level clouds. Journal of Geophysical Research Atmospheres, 118(19), 11161–11174. https://doi.org/10.1002/jgrd.50842
dc.relationFranklin, B. A., Brook, R., y Pope, A. C. (2015). Air pollution and cardiovascular disease. Current Problems in Cardiology, 40(5), 207–238. https://doi.org/10.1016/j.cpcardiol.2015.01.003
dc.relationGill, L., Cáceres, D., Quiñones, L., y Adonis, M. (1997). Contaminación del aire en espacios interiores y exteriores en la ciudad de Temuco. Ambiente y Desarrollo, 13(1), 70–78. Retrieved from http://www.cipma.cl/web/200.75.6.169/RAD/1997-1.html
dc.relationHamilton, R. S., Revitt, D. M., Vincent, K. J., y Butlin, R. N. (1995). Sulphur and nitrogen particulate pollutant deposition on to building surfaces. Science of the Total Environment, 167, 57–66. https://doi.org/10.1016/0048-9697(95)04569-M
dc.relationIASS. (2014). Protocolo de Vigilancia en Salud Pública. Ins.Gov.Co. Retrieved from http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Protocolos SIVIGILA/PRO VIH - SIDA.pdf
dc.relationINSHT. (2016). Determinación de metales y sus componentes iónicos en aire. Método de captación en filtro espectrofometría de emisión atómica por plasma acoplado inductivamente con detector óptico (ICP-AES). Madrid. Retrieved from http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/MetodosAnalisis/MA/MA_065_A16.pdf
dc.relationKim, N. K., Kim, Y. P., y Kang, C. H. (2011). Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5 data between 1992 and 2008. Atmospheric Environment, 45(34), 6107–6115. https://doi.org/10.1016/j.atmosenv.2011.08.051
dc.relationLippmann, M. (2008). Environmental Toxicants: Human Exposures and Their Health Effects: Third Edition (3rd ed.). Hoboken, New Jersey: John Wiley y Sons. https://doi.org/10.1002/9780470442890
dc.relationLiu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., … Wiedensohler, A. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the north China plain. Atmospheric Chemistry and Physics, 11(7), 3479–3494. https://doi.org/10.5194/acp-11-3479-2011
dc.relationMADS. (2017). Inventarios de emisiones atmosféricas. Bogota. Retrieved from http://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/emisiones_atmosfericas_contaminantes/documentos_relacionados/GUIA_PARA_LA_ELABORACION_DE_INVENTARIOS_DE_EMISIONES_ATMOSFERICAS.pdf
dc.relationMAVDT. Protocolo para el monitoreo y seguimiento de la calidad del aire (2010).
dc.relationMehta, A. J., Zanobetti, A., Bind, M.-A. C., Kloog, I., Koutrakis, P., Sparrow, D., … Schwartz, J. D. (2016). Long-Term Exposure to Ambient Fine Particulate Matter and Renal Function in Older Men: The VA Normative Aging Study. Environmental Health Perspectives, (April). https://doi.org/10.1289/ehp.1510269
dc.relationMontoya, L., y Hildemann, L. (2005). Size distributions and height variations of airborne particulate matter and cat allergen indoors immediately following dust-disturbing activities. Journal of Aerosol Science, 36(5–6), 735–749. https://doi.org/10.1016/j.jaerosci.2004.11.004
dc.relationMontoya, M., Zapata, P., y Correa, M. (2013). Contaminación ambiental por PM 10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia PM 10 environmental pollution in and around housing and respiratory capacity in Puerto Nare, Colombia. Revista de Salud Publica, 15(1), 103–115.
dc.relationMorillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., y Madariaga, J. M. (2016). Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Science of the Total Environment, 550, 285–296. https://doi.org/10.1016/j.scitotenv.2016.01.080
dc.relationOEA. (2015). COMISION INTERAMERICANA DE DERECHOS HUMANO
dc.relationOMS. (2005). Guías de calidad del aire de la OM S relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. Retrieved from http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/es/
dc.relationOriginLab Corporation. (2013). Origin 9.1 User Guide. Http://Www.Originlab.Com/91. Retrieved from http://cloud.originlab.com/pdfs/Origin91_Documentation/English/Origin_9.1_User_Guide_E.pdf
dc.relationOSMAN. (2011). Calidad del aire interior. 2672. https://doi.org/10.1590/S1020-49891998001200018
dc.relationPope, C. A., Ezzati, M., Dockery, D. W., Pope III, C. A., Ezzati, M., y Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646
dc.relationPope, C. A., Verrier, R. L., Lovett, E. G., Larson, A. C., Raizenne, M. E., y Kanner, R. E. (1999). Heart rate variability associated with particulate air pollution. Am Heart J, 138, 11–15. https://doi.org/10.1016/S0002-8703(99)70014-1
dc.relationRaaschou, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z. J., Hoffmann, B., … Vineis, P. (2016). Particulate matter air pollution components and risk for lung cancer. Environment International, 87(FEBRUARY), 66–73. https://doi.org/10.1016/j.envint.2015.11.007
dc.relationRojano, R., Arregoces, H., y Restrepo, G. (2014). Composición elemental y fuentes de origen de particulas respirables (PM10) y Particulas Suspendidas Totales (PST) en el área Urbana de la Ciudad de Riohacha, Colombia. Informacion Tecnologica, 25(6), 3–12. https://doi.org/10.4067/S0718-07642014000600002
dc.relationRojano, R. E., Angulo, L. C., y Restrepo, G. (2013). Niveles de partículas suspendidas totales (PST), PM10 y PM2.5 y su relación en lugares públicos de la ciudad Riohacha, caribe colombiano. Informacion Tecnologica, 24(2), 37–46. https://doi.org/10.4067/S0718-07642013000200006
dc.relationRosenfeld, D. (2000). Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 287(5459), 1793–1796. https://doi.org/10.1126/science.287.5459.1793
dc.relationSDA, S. D. de A. (2009). Elementos técnicos del plan decenal de descontaminación de Bogota (Primera ed). Bogota D. C.
dc.relationSEMARNAT. (2013). Guía metodológica para la estimación de emisiones de fuentes fijas. Mejico D. C.
dc.relationSokolik, I. N., y Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature (Vol. 381). https://doi.org/10.1038/381681a0
dc.relationTyler, N. (2013). Marco Teórico de contaminación atmosférica en Colombia.
dc.relationVelasteguí, A. (2017). Evaluación De Riesgos Por Ruido, Iluminación Y Material Particulado En La Fábrica De Carrocerías Master Metal. Retrieved from http://repositorio.uta.edu.ec/bitstream/123456789/25244/1/Tesis_1227id.pdf
dc.relationVengoechea, A., y Arregoces, H. (2011). Composición química de las Partículas Suspendidas Totales (PST) y Partículas Menores de 10 micras (PM10) en la zona urbana de la ciudad de Riohacha, La Guajira Colombiana. Universidad de La Guajira. Retrieved from http://www.uniguajira.edu.co/biblioteca
dc.relationWatson, J. (1979). Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon. University of Oregon, Reno
dc.relationWatson, J., y Chow, J. (2015). Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. Introduction to Environmental Forensics. https://doi.org/10.1016/B978-0-12-404696-2.00020-5
dc.relationWatson, J. G., y Chow, J. C. (2014). Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. Introduction to Environmental Forensics: Third Edition, 677–706. https://doi.org/10.1016/B978-0-12-404696-2.00020-5
dc.relationWHO. (2003). Health Aspects of Air Pollution with Particulate Matter , Ozone and Nitrogen Dioxide. Report on a WHO Working Group Bonn, Germany 13–15 January 2003, (January), 98. https://doi.org/10.2105/AJPH.48.7.913
dc.relationWHO, W. H. O. (2011). Who Guidelines for indoor air quality. Journal of Biomedical Semantics. https://doi.org/10.1186/2041-1480-2-S2-I1
dc.relationWiwatanadate, P., y Liwsrisakun, C. (2011). Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. International Journal of Hygiene and Environmental Health, 214(3), 251–257. https://doi.org/10.1016/j.ijheh.2011.03.003
dc.relationXu, J. S., He, J., Behera, S. N., Xu, H. H., Ji, D. S., Wang, C. J., … Du, R. G. (2017). Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere, 179(April), 316–330. https://doi.org/10.1016/j.chemosphere.2017.03.119
dc.relationYao, X. H., Lau, N. T., Fang, M., y Chan, C. K. (2006). On the time-averaging of ultrafine particle number size spectra in vehicular plumes. Atmospheric Chemistry and Physics, 6(12), 4801–4807. https://doi.org/10.5194/acpd-6-6825-2006
dc.relationZhou, M., Qiao, L., Zhu, S., Li, L., Lou, S., Wang, H., … Chen, C. (2016). Chemical characteristics of fine particles and their impact on visibility impairment in Shanghai based on a 1-year period observation. Journal of Environmental Sciences, 1–10. https://doi.org/10.1016/j.jes.2016.01.022
dc.relationZijlema, W. L., Wolf, K., Emeny, R., Ladwig, K. H., Peters, A., Kongsgård, H., … Rosmalen, J. G. M. (2015). The association of air pollution and depressed mood in 70,928 individuals from four European cohorts. International Journal of Hygiene and Environmental Health, 219(DECEMBER), 212–219. https://doi.org/10.1016/j.ijheh.2015.11.006
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsDerecho Reservados Universidad de La Guajira
dc.titleAporte y composición química de aerosoles marinos en las partículas PM10 en exteriores e interiores de Riohacha - La Guajira, Colombia.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución