Determination of the probiotic in vitro effect of Lactobacillus gasseri on a Staphylococcus epidermidis strain

dc.creatorJurado Gámez, Henry
dc.creatorFajardo Argoti, Catalina
dc.date2017-07-01 00:00:00
dc.date2021-02-14T10:01:10Z
dc.date2017-07-01 00:00:00
dc.date2021-02-14T10:01:10Z
dc.date2017-07-01
dc.date.accessioned2023-09-06T18:36:54Z
dc.date.available2023-09-06T18:36:54Z
dc.identifier1657-9550
dc.identifierhttps://doi.org/10.17151/biosa.2017.16.2.6
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/16001
dc.identifier10.17151/biosa.2017.16.2.6
dc.identifier2462-960X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8700020
dc.descriptionDebido a las propiedades probióticas características de las bacterias ácido lácticas, tales como generar compuestos derivados de su fermentación capaces de inhibir múltiples organismos patógenos, hasta crear un ambiente desfavorable para los mismos y finalmente ser usadas como alternativas al uso de medicamentos para tratar y prevenir diversas patologías, en el presente estudio, se buscó evaluar las características probióticas de L. gasseri sobre S. epidermidis en condiciones in vitro. Se determinó la susceptibilidad de las dos cepas a diferentes antibióticos; el efecto de inhibición de L. gasseri y su sobrenadante sobre S. epidermidis; crecimiento de la cepa láctica a diferentes pH, temperatura, sales biliares y bilis bovina; también se estableció la cinética de fermentación y en ella se determinó conteo de microorganismos viables en placa, pH, consumo de azúcar, consumo de proteína y porcentaje de ácido láctico; finalmente mediante HPLC-DAD para L. gasseri se determinó péptidos y ácido láctico, y en el caso de aminoácidos en el sobrenadante se determinó para las dos cepas mediante HPLC-PDA. Se encontró resistencia de ambas cepas a los antibióticos gentamicina y dicloxacilina. La cepa láctica y el sobrenadante inhibieron el crecimiento de S. epidermidis. El crecimiento fue adecuado para lasdiferentes variables con valores entre 1,8 x 109 a 3,0 x 1012 UFC/150 µl. Se observó la fase exponencial a las 12 horas con un valor de 3 x 1011 UFC/150 µl, con valores de 4,296, 1,26%, 2,032 mg/l y 0,65 mg/l para pH, ácido láctico, consumo de azúcar y consumo de proteína respectivamente. Por último, se identificaron en el sobrenadante de L. gasseri mediante HPLC-DAD el péptido VAL-TIR-VAL con un valor de 0,73 mg/ml, 11,70 g/l de ácido láctico. Los resultados demuestran que Lactobacillus gasseri posee características probióticas sobre S. epidermidis en condiciones in vitro.
dc.descriptionDue to the characteristic probiotic properties of lactic acid bacteria such as the generation of compounds derived from fermentation, which can inhibit multiple pathogenic organisms to create an unfavorable environment for them and finally to be used as an alternative to the use of drugs to treat and prevent various diseases. The present study sought to assess probiotic characteristics of L. gasseri on S. epidermidis under in vitro conditions. The susceptibility of both strains to different antibiotics, the inhibitory effect of L. gasseri and supernatant on S. epidermidis, and the growth of the lactic strain at different pH, temperature, bile salts and bovine bile were determined. The fermentation kinetics was established, and the count of viable microorganisms in plaque, pH, sugar consumption, consumption of protein and percentage of lactic acid was defined. Finally, peptides and lactic acid were determined using HPLC-DAD for L. gasseri, and in the case of amino acids in the supernatant, these were determined with HPLC-PDA for the two strains. The resistance of both strains to the antibiotics gentamicin and dicloxacillin was found. The lactic strain and the supernatant inhibited the growth of S. epidermidis. The growth was suitable for the different variables with values between 1.8 x 109 and 3.0 x 1012 CFU/150 µl. The exponential phase was observed at 12 hours with a value of 3 x 1011 CFU/150 µl, with values of 4.296, 1.26%, 2.032 mg/l and 0.65 mg/l for pH, lactic acid, sugar consumption and protein consumption, respectively. Finally, the peptide VAL-TIR-VAL with a value of 0.73 mg/ml, 11.7 g/l of lactic acid, and the amino acid tyrosine were identified in the supernatant of L. gasseri by HPLC-DAD. The results show that Lactobacillus gasseri have probiotic characteristics on S. epidermidis under in vitro conditions.
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad de Caldas
dc.relation69
dc.relation2
dc.relation53
dc.relation16
dc.relationBiosalud
dc.relationBergey R. Manual of determinative bacteriology. 7 Edition; 1957. p. 1094.
dc.relationSelle K, Klaenhammer TR. Genomic and Phenotypic Evidence for Probiotic Influences of Lactobacillus Gasseri on Human Health. FEMS Microbiology Reviews 2013; 37(6) 915-935.
dc.relationTreven P, Turkova K, Trmcic A, Obermajer T, Rogelj I. Matijasic BB. Detection and quantification of probiotic strain Lactobacillus gasseri K7 in faecal samples by targeting bacteriocin genes. Folia Microbiol. 2013 (Praha); 58:623–630.
dc.relationYanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S et al. Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem 2009; 73: 372–377 (traducido por los autores).
dc.relationTaponen S, Pyörälä S. Coagulase-negative staphylococci as cause of bovine mastitis-Not so different from Staphylococcus aureus. 2009.
dc.relationSawant AA, Gillespie BE, Oliver SP Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. 2008.
dc.relationCrueger W, Crueger A. (1993). Biotecnología: manual de microbiología industrial. 3 ed. España: Ed. Acribia. 220 p.
dc.relationJurado-Gámez H, Calpa-Yama F, Chaspuengal-Tulcán A.. Determinación in vitro de la acción probiótica de Lactobacillus plantarum sobre Yersinia pseudotuberculosis aislada de Cavia porcellus. Rev. Fac. Med. Vet. Zoot. 2014; 61: 241-257.
dc.relationBauer AW, Kirby WM, Sherris JC, Turck M. (1966). Antibiotic susceptibility testing by a standardizedsingle disk method. American Journal of Clinical Pathology, 45, 493.
dc.relationTagg J, Mcgiven A. Assay system for Bacteriocins. Appl. Environ. Microb. 1971; 21: 943.
dc.relationKlaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiology Reviews 1993; 12(1-3): 39-85.
dc.relationCai Y, Benno Y, Nakase T, Oh T. Specific probiotic characterization of Weissella hellenica DS-12 isolated from flounder intestine. J Gen Appl Microbiol. 1998; 44: 311-316.
dc.relationCai Y, Suyanandana P, Saman P, Benno Y. Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol. 1999; 45: 177-184.
dc.relationDahl T, Midden W, Hartman P. (1989). Comparison of Killing of Gram-negative and Gram-positive Bacteria by Pure Singlet Oxygen. J Bacteriol. 171: 2188-2194.
dc.relationLanara, laboratório de referência animal. Métodos analíticos oficiáis para controle de produtos de origem animal e seus ingredientes. Ii- Métodos físico e químicos. Mel. Ministério da Agricultura. Brasília. 1981. 2 (25): 1-15.
dc.relationDubois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric method for determination of sugar and related substances. Anal Chem. 1956; 28:350-356.
dc.relationLowry O, Rosebroug N, Far A, Randall Rj. Protein measurement with the folin phenol reagent. J. Biological. Chemistry. 1951; 193: 265-75.
dc.relationTeuber M, Meile L, Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 1999; 76 115-137.
dc.relationSalyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004; 12 412–41610.1016/j.tim.2004.07.004
dc.relationHambleton P, Turnbull PCB. Anthrax vaccine development: a continuing story. Adv. Biotechnol. Processes. 1990; 13:105–122.
dc.relationZhou JS, Pillidge CJ, Gopal, PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology 2005; 98(2), 211-217.
dc.relationBenavides-Plascencia L, Aldama-Ojeda LA, Vázquez JH. Vigilancia de los niveles de uso de antibióticos y perfiles de resistencia bacteriana en hospitales de tercer nivel de la Ciudad de México. Salud Pública de México 2005; 47(3), 219-226.
dc.relationMaranan MC, Moreira B, Boyle-Vavra S, Daum RS. Antimicrobial resistance in staphylococci: epidemiology, molecular mechanisms, and clinical relevance. Infectious Disease Clinics of North America 1997; 11(4), 813-849.
dc.relationRolfe DR. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 2000; 130:396.
dc.relationDe Vuyst L. Growth kinetics and production of probiotic lactic acid bacteria strains: limitations and breakthroughs. Med. Fac. Landbouww. Univ. Gent. 1998; 63/4b:1511.
dc.relationFeria Cáceres PF. Aislamiento y caracterización Bacteriocinas producidas por Lactobacillus plantarum LPBM10 en suero de leche. Tesis Msc Biotecnología. Universidad Nacional de Colombia, Facultad de Ciencias. Medellín - Colombia, 2007. p 84,
dc.relationJurado-Gámez H, Guzmán-Insuasty M, Jarrín-Jarrín V. Determinación de la cinética, pruebas de crecimiento y efecto de inhibición in vitro de Lactobacillus lactis en Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae y Escherichia coli. Rev. Med. Vet. Zoot. 2015; 62: 40-56.
dc.relationLeveau JY, Bouix M. Microbiología industrial: Los microorganismos de interés industrial. Ed. Acribia. Zaragoza, España. 2000. pp. 167-187, 206, 227-242.
dc.relationUrbanska A, Bhathena J, Prakash S. Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: Preparation and in vitro analysis of alginate-chitosan microcapsules. Canadian Journal of Physiology and Pharmacology 2007; 85(9):884-893.
dc.relationÁvila J, Ávila M, Tovar B, Brizuela M, Perazzo Y, Hernández H. Capacidad probiótica de cepas del género Lactobacillus extraídas del tracto intestinal de animales de granja. Revista Científica 2010; 20(2), 161-170.
dc.relationDel Piano M, Morelli L, Strozzi G, Allesina S, Barba M, Deidda F et al. Probiotics: From research to consumer. Digest. Liver Dis. 2006; 38(2): 248-255.
dc.relationDe Roissart H, Luquet FM. Bacteries lactiques Aspects Fondamentaux et Technologiques. 2 Ed. France: Lorica. 1994.
dc.relationPrescott LM, Harley JP, Klein, DA. Microbiología. 4a ed., Ed. McGraw-Hill Interamericana. Zaragoza, España. 1999. pp. 515-518.
dc.relationKlingberg TD.; Axelsson, L.; Naterstad, K.; Elsser, D. y Budde, B.B. (2005). Identification of potential probiotic starter cultures for scandinavian-type fermented sausages. International Journal of Food Microbiology, vol. 105, no. 3, p. 419-431,
dc.relationMora N, García A. Susceptibilidad de bacterias ácido lácticas (BAL) frente a diversos antibióticos. [Tesis Licenciado Química en Alimentos]. [Hidalgo, México] Universidad Autónoma del Estado de Hidalgo. 2007.
dc.relationJin LZ, Ho YW, Abdullah N, Jalaludin S. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Microbiol. 1998; 27:183-185.
dc.relationRonka E, Malinen E, Saarela M, Rinta-Koski M, Aarnikunnas J, Palva. A. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 2003; 83:63-7
dc.relationCorcoran BM, Ross RP, Fitzgerald GF, Stanton C. Comparative survival of probiotic lactobacilli spraydried in the presence of prebiotic substances. J. Appl. Microbiol. 2004; 96:1024-1039
dc.relationPérez-Luyo A. Probióticos: ¿Una alternativa en la prevención de la caries dental? Rev Estomatol Herediana. [Internet]. [Citado 2013 abril 10]; 2008. 18 (1): 65-68. Disponible en: http://www.upch.edu.pe/vrinve/dugic/revistas/index.php/REH/article/viewF ile/1856/1865.
dc.relationDellaglio F, Felis GE, Torriani S, Sørensen K, Johansen E. Genomic characterisation of starter cultures. Probiotic Dairy Products 2005; 16-38.
dc.relationJurado-Gámez HA, Romero-Benavides DA, Morillo-Garcés JA. Inhibición de Lactobacillus gasseri sobre Yersinia pseudotuberculosis en condiciones in vitro. Revista de la Facultad de Medicina Veterinaria y Zootecnia 2016; 63(2), 95-112.
dc.relationMishra C, Lambert J. Production of antimicro- bial substances by probiotics. Asian Pacific J Clinic Nutr. 1996.
dc.relationGonzález A, Vaccari G, Dosi E, Trilli A, Rossi M, Matteuzzi D. Enhanced production of L(+) – lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion – exchange resins and cross – flow filtration in a fully automated pilot plant controlled via. Biotechnology and Bioengineering 2000; 67(2): 147 – 156.
dc.relationFoo EL, Griffin HG, Mollby R, Hedén CG. (Editors). The Lactic Acid Bacteria. Horizon Scientific Press. United Kingdom, 1993. pp. 89 – 91.
dc.relationLeblanc JG, Matar C, Valdez JC, Leblanc J, Perdigon G. Immunomodulatory effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. Journal of Dairy Science 2002; 85:2733- 2742
dc.relationKawai Y, et al. Gassericin A; an uncommon cyclic bactericon produced by Lactobacillus gasseri LA39 linked at N- and C- terminal ends. Biosci Biotechnol Biochem. 1998; 62:2438-2440.
dc.relationTrabi M, Craik Dj. Circular proteins-no end in sight. Trends Biochem. 2002. Sci. 27: 132-138.
dc.relationRivas L, Andreu D. Péptidos antimicrobianos eucarióticos: una nueva alternativa en clínica. Enferm. Infecc. Microbiol. Clin. 2003; 21: 358-365.
dc.relationMaqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M, Valdivia E, Martínez-Bueno M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev. 2008; 32:2-22.
dc.relationMontalbán-López M, Sánchez-Hidalgo M, Cebrián R, Maqueda M. Discovering the bacterial circular proteins: bacteriocins, cyanobactins, and pilins. J Biol Chem. 2012; 287:27007- 27013
dc.relationSivonen K, Leikoski N, Fewer DP, Jokela J. Cyanobactins–ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 2010; 86:1213–1225.
dc.relationNúm. 2 , Año 2017 : Julio - Diciembre
dc.relationhttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/3712/3428
dc.rightsDerechos de autor 2017 Biosalud
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/3712
dc.subjectLactic bacteria
dc.subjectinhibition
dc.subjectpathogenic strain
dc.subjectprobiotic
dc.subjectbacteria láctica
dc.subjectinhibición
dc.subjectcepa patógena
dc.subjectprobiótico
dc.titleDeterminación del efecto probiótico In vitro de Lactobacillus gasseri sobre una cepa de Staphylococcus epidermidis
dc.titleDetermination of the probiotic in vitro effect of Lactobacillus gasseri on a Staphylococcus epidermidis strain
dc.typeArtículo de revista
dc.typeSección Artículos Originales
dc.typeJournal Article
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución