dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorSeridonio, A. C.
dc.creatorYoshida, M.
dc.creatorOliveira, L. N.
dc.date2013-09-30T18:50:59Z
dc.date2014-05-20T14:16:41Z
dc.date2016-10-25T17:39:37Z
dc.date2013-09-30T18:50:59Z
dc.date2014-05-20T14:16:41Z
dc.date2016-10-25T17:39:37Z
dc.date2009-12-01
dc.date.accessioned2017-04-05T22:22:39Z
dc.date.available2017-04-05T22:22:39Z
dc.identifierPhysical Review B. College Pk: Amer Physical Soc, v. 80, n. 23, p. 13, 2009.
dc.identifier1098-0121
dc.identifierhttp://hdl.handle.net/11449/25020
dc.identifierhttp://acervodigital.unesp.br/handle/11449/25020
dc.identifier10.1103/PhysRevB.80.235318
dc.identifierWOS:000273228800079
dc.identifierWOS000273228800079.pdf
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.80.235318
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/869962
dc.descriptionA numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherAmer Physical Soc
dc.relationPhysical Review B
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAnderson model
dc.subjectballistic transport
dc.subjectelectric admittance
dc.subjectelectrical conductivity transitions
dc.subjectKondo effect
dc.subjectmixed conductivity
dc.subjectmixed valence compounds
dc.subjectquantum dots
dc.subjectquantum wires
dc.subjectrenormalisation
dc.titleUniversal zero-bias conductance through a quantum wire side-coupled to a quantum dot
dc.typeOtro


Este ítem pertenece a la siguiente institución