dc.contributor | Rosero-Moreano, Milton | |
dc.contributor | Grupo de Investigación en Cromatografía y Técnicas Afines (Categoría A1) | |
dc.creator | LÓPEZ, CARLOS ANDRÉS | |
dc.date | 2022-02-22T22:37:05Z | |
dc.date | 2022-05-30 | |
dc.date | 2022-02-22T22:37:05Z | |
dc.date | 2022-02-22 | |
dc.date.accessioned | 2023-09-06T18:33:31Z | |
dc.date.available | 2023-09-06T18:33:31Z | |
dc.identifier | https://repositorio.ucaldas.edu.co/handle/ucaldas/17444 | |
dc.identifier | Universidad de Caldas | |
dc.identifier | Repositorio institucional Universidad de Caldas | |
dc.identifier | https://repositorio.ucaldas.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8699202 | |
dc.description | Ilustraciones, gráficas | |
dc.description | spa:En la determinación de analitos, es fundamental preparar la muestra antes de hacer la introducción en el sistema de análisis, por lo tanto, es necesario aplicar diversas técnicas entre ellas la extracción y microextracción. Actualmente se buscan métodos de extracción que sean más amigables con el medio ambiente, que faciliten el mejoramiento de las técnicas analíticas con ayuda de los principios de la química verde; por ejemplo, realizar análisis con el menor uso de sustancias contaminantes, al igual que disminuir el tiempo de análisis y de trabajo experimental. Estos procesos, son trascendentales en el análisis de compuestos como estrógenos E3, E2 y EE2, encontrados en cantidades traza y con actividad biológica potencialmente peligrosa en animales.
Entre estos compuestos, se encuentran las hormonas y tanto las naturales, como las sintéticas, pueden llegar al medio acuoso a través de diferentes vías, siendo la fuente principal la descarga al medio de las plantas de tratamiento de aguas residuales (PTAR´s) y debido a su eliminación incompleta, estos compuestos siguen presentes en el medio acuático con concentraciones que suelen ser del orden de pg a ng L-1 y son las aguas residuales hospitalarias consideradas como uno de los principales focos de contaminación emergente, debido a las distintas actividades que allí se realizan, donde se incluyen trabajos de investigación, laboratorio clínico y la excreción de pacientes que están recibiendo tratamiento con un variado número de sustancias para un amplio rango de enfermedades; el contexto actual plantea una serie de interrogantes frente a la baja tasa de remoción de compuestos que son altamente recalcitrantes, con baja biodegradabilidad y remoción por medio de tratamientos convencionales, por lo que pueden llegar a los sistemas de alcantarillado urbano o fuentes de agua potable lo que constituye un potencial riesgo para la salud humana y en este sentido se necesitan metodologías analíticas, rápidas, sensibles y selectivas para su determinación.
Este trabajo, se basa en la implementación de un método analítico de extracción por adsorción con disco rotatorio (RDSE) empacado con arcillas modificadas con líquidos iónicos, para el análisis de estrógenos E3, E2 y EE2 provenientes de muestras acuosas de plantas de tratamiento de aguas residuales de hospital; los analitos de interés son 17β-estradiol (E2), estriol (E3) y 17α-etinilestradiol (EE2). Los compuestos en las muestras se extrajeron por extracción con RDSE a partir de muestras dopadas y fueron leídas por cromatografía líquida de alta eficiencia con detector de arreglo de diodos y fluorescencia en serie (HPLC-PDA-FL), usando como patrones las hormonas (E2), (E3) y (EE2) se realizaron extracciones con adsorbente comercial (C18) y arcillas modificadas con líquidos iónicos tipo [C16MIM+] [anión-], con distintos aniones [Br-], [BF4-] y [OH-], obteniéndose porcentajes de recuperación con rangos de 24 a 26%, 42 a 48% y 57 y 67% para E3, E2 y EE2 respectivamente los cuales mostraron competitividad con la fase adsorbente comercial C18. Las condiciones óptimas de extracción fueron las siguientes: volúmenes de muestra de 10 mL, tiempo de extracción de 60 minutos, temperatura de extracción de 30 °C y 1500 rpm, bajo estas condiciones, las recuperaciones han sido de adecuadas para este tipo de técnicas de extracción, reproducibles y con bajos límites de detección. Los límites de detección alcanzados con la técnica de RDSE fueron de 0,18; 0,15 y 0,07, ng mL -1 y con linealidades de 0,9963, 0,9995 y 0,9915 para E3, EE2 y E2 respectivamente. Con ayuda de la técnica de RDSE se alcanzaron factores de concentración de 13, 23 y 32 para E3, EE2 y E2 respectivamente, mientras que en lectura de muestra reales la RSDE intradisco alcanzó valores máximos de 12 % siendo la E3 la de mayor % RSD y la E2 la de menor variabilidad con 7 %. La lectura de muestras reales arrojó valores promedio de las 3 hormonas en concentraciones de 4,30; 3,85 y 7,23 ng mL-1 en afluente y 3,81; 1,33 y 4,00 ng mL-1 en efluente para E3, E2 y EE2 respectivamente | |
dc.description | eng:Human steroid hormones pose a danger to human health. These hormones are classified as emerging pollutants and endocrine disrupting compounds. 17α- ethinylestradiol (EE2) and 17β-estradiol (E2) and estriol (E3) are present in wastewater samples in amounts expressed in ng L-1. Using the spinning disk sorption extraction (RDSE) method with different sorbent phases, such as ionic liquid modified clays, we analyzed human steroid hormones in wastewater samples. We modified the natural clay, by introducing ionic liquid ([C16MIM+] [anion], anion = Br-, OH- or BF4- between its intermediate layers. After extraction, the analytes were read with the help of chromatography (HPLC- PDA-FL). The technique achieved recoveries of 63% for EE2, 45% for E2 and 25% for E3. Finally, the method achieved detection and quantification limits between 0.18 and 0.42, 0.15 and 0.37, 0.07 and 0.16 ng mL- 1 for E3, E2 and EE2, respectively, with the modified clays. In a wastewater plant, the method yielded mean concentration values of 4.30, 3.85 and 7.23 ng mL-1 in the effluent, and 3.81, 1.33 and 4.00 ng mL-1 in the effluent for E3, E2 and EE2, respectively An efficient and replicable method has been applied for the extraction of estrogens in wastewater with relevant adequate results. | |
dc.description | 1. Introducción / 2. Objetivos/ 2.1 Objetivo General / 2.2 Objetivos Específicos/ 3. Planteamiento del Problema / 4. Justificación / 5. Marco Teórico/ 5.1 Contaminantes Emergentes/ 5.1.1 Contaminantes emergentes en el agua / 5.1.2 Contaminantes emergentes caso especial de estrógenos / 5.2 La Disrupción Endocrina Y Su Relación Con Los Contaminantes Emergentes/ 5.3 Tratamiento De Contaminantes Emergentes En Aguas/ 5.3.1 Estado de los contaminantes emergentes en el ambiente y su relación con las plantas de tratamiento/ 5.4 Plantas De Tratamiento De Aguas/ 5.4.1 Origen y evolución de los tratamientos en aguas/ 5.5 Preparación De Muestras Miniaturizada (Técnicas De Extracción Y Microextracción)/ 5.5.1 Análisis bibliométrico de técnicas analíticas de extracción y microextracción/ 5.5.2 Importancia de las técnicas de extracción y microextracción/ 5.5.3 Ventajas de las técnicas de microextracción/ 5.5.4 Las nuevas técnicas de microextracción / 5.6 Extracción Por Adsorción Con Disco Rotatorio RDSE/ 5.6.1 Modos de trabajo en la extracción por adsorción con discos rotatorios RDSE/ 5.7 Fases Eco-Sorbentes Con Utilidad En Procesos De Extracción / 5.7.1 Arcillas naturales Montmorillonitas / 5.7.2 Características y propiedades de las montmorillonitas/ 5.7.3. Desarrollo y aplicación de nuevos materiales utilizando montmorillonitas y líquidos iónicos/ 5.7.4 Uso de bentonitas y líquidos iónicos como eco-sorbentes/ 5.7.5 Mecanismos de interacción entre líquidos iónicos y minerales tipo arcilla/ 5.1 Métodos De Extracción De Hormonas En Agua Residual / 5.2 Sistema De Análisis HPLC Para Hormonas En Aguas/ 5.3 Moléculas De Estudio / 6 6. Materiales y Métodos/ 6.1 Reactivos/ 6.2 Instrumentación/ 6.3 Condiciones Cromatográficas/ 6.4 Síntesis De Líquidos Iónicos/ 6.5 Purificación Y Funcionalización De Las Arcillas/ 6.6 Extracción Y Desorción De Los Analitos Usando Adsorbentes Comerciales Y Arcillas Modificadas Con La Técnica De RDSE / 6.7 Validación Del Método / 6.8 Optimización De Los Parámetros De Extracción / 6.9 Análisis De Muestras Reales/ 7. Resultados y Análisis/ 7.1 Arcillas Modificadas/ 7.1.1 Espectroscopia FT-IR para MMT pura y MMT modificada / 7.1.2 Difracción por rayos X (XRD) de arcilla MMT modificada / 7.1.3 Análisis por microscopía electrónica de barrido SEM / 7.2 Validación Del Método Analítico / 7.2.1 Límites de detección y cuantificación/ 7.2.2 Modelo de regresión lineal y figuras de mérito / 7.3 Optimización Del Método De Extracción/ 7.3.1 Control de variables de extracción dependientes del tiempo y la velocidad de agitación RDSE/ 7.3.2 Efecto de la cantidad de adsorbente en la RDSE usando arcilla modificada con líquidos iónicos/ 7.3.3 Efecto de la cantidad de muestra en la extracción RDSE para hormonas / 7.3.4 Efecto de la temperatura en la extracción RDSE para hormonas/ 7.3.5 Variables óptimas de extracción RDSE/ 7.4 Características Analíticas Del Método Usando RDSE/ 7.5 Tiempo De Desorción Y Volumen Del Eluyente Para El Uso De La RDSE / 7.6 Selección Del Tipo De Adsorbente Para La Extracción Con RDSE / 7.7 Selección De La Arcilla Modificada/ 7.8 Análisis De Muestras Reales En La Planta De Tratamiento Del Hospital Santa Sofía De Caldas/ 7.8.1 Mediante el uso de arcilla en el proceso de extracción/ 7.8.2 Análisis de los sitios de muestreo usando arcilla como adsorbente/ 7.8.3 Análisis del tiempo de muestreo usando arcillas en la extracción/ 7.8.4 Comparativo mediante el uso de C18 y arcilla modificada en el proceso de extracción/ 7.8.5 Análisis de los sitios de muestreo usando C18 como adsorbente/ 8. Conclusiones/ 9. Recomendaciones / 10. Bibliografía / 11. Anexos/ 11.1 Tratamiento En Aguas Caso Especial Estrógenos / 11.2 Caso Específico De Colombia En Tratamientos De Agua Residual. | |
dc.description | Maestría | |
dc.description | No se autoriza publicacion de tesis, hasta tanto no se publique en articulo cientifico de la revista Water Science and Technolgy | |
dc.description | Magister en Química | |
dc.description | Técnicas de preparación de muestras y análisis de contaminantes emergentes | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.language | spa | |
dc.publisher | Facultad de Ciencias Exactas y Naturales | |
dc.publisher | Manizales | |
dc.publisher | Maestría en Química | |
dc.relation | [1]. Abel Díaz Cadavid (1999). Diseño estadístico de experimentos 2ª Ed, Editorial Universidad de Antioquia | |
dc.relation | [2]. Abolghasemi, M. M., Parastari, S., & Yousefi, V. (2014). Polypyrrole-montmorillonite nanocomposite as sorbent for solid-phase microextraction of phenolic compounds in water. Journal of Separation Science, 37(23), 3526–3532. doi:10.1002/jssc.201400602 | |
dc.relation | [3]. Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, et al. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 2004;378:688–96 | |
dc.relation | [4]. Aftafa, C., Pelit, F. O., Yalçinkaya, E. E., Turkmen, H., Kapdan, İ., & Nil Ertaş, F. (2014). Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1361, 43–52. doi:10.1016/j.chroma.2014.07.095 . | |
dc.relation | [5]. Aherne, G. W., & Briggs, R. (1989). The relevance of the presence of certain synthetic steroids in the aquatic environment. Journal of Pharmacy and Pharmacology, 41(10), 735–736. doi:10.1111/j.2042-7158.1989.tb06355.x | |
dc.relation | [6]. Ahmed, Y. Chaker, El H. Belarbi, O. Abbas, J.N. Chotard, H.B. Abassi, A.Nguyen Van Nhien, M. El Hadri, S. Bresson, XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids, Journal of Molecular Structure (2018), doi: 10.1016/j.molstruc.2018.07.039 | |
dc.relation | [7]. Alcudia-León, M. C., Lucena, R., Cárdenas, S., & Valcárcel, M. (2009). Stir Membrane Extraction: A Useful Approach for Liquid Sample Pretreatment. Analytical Chemistry, 81(21), 8957–8961. doi:10.1021/ac9016192 | |
dc.relation | [8]. Alda, M. J., Barceló, D. (2001). Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius’ Journal of Analytical Chemistry, 371(4), 437–447. doi:10.1007/s002160101027 | |
dc.relation | [9]. Amin, M. M., Bina, B., Ebrahimi, A., Yavari, Z., Mohammadi, F., & Rahimi, S. (2018). The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran. Chinese Journal of Chemical Engineering, 26(5), 1132–1139. doi:10.1016/j.cjche.2017.09.005 | |
dc.relation | [10]. Arbelaez, A. S. (2012). Contaminantes emergentes en aguas residuales y de río y fangos de depuradora. Dipòsit legal: t 63-2016. Universitat Rovira i Virgili | |
dc.relation | [11]. Argemi, F.; Cianni, N.; Porta, A. (2005): Disrupción endocrina: perspectivas ambientales y salud pública, en: Acta Bioquímica Clínica Latinoamericana, 39(3), 291-300. | |
dc.relation | [12]. Armenta, S., Garrigues, S., & de la Guardia, M. (2015). The role of green extraction techniques in Green Analytical Chemistry. TrAC Trends in Analytical Chemistry, 71, 2–8. http://doi.org/10.1016/j.trac.2014.12.011 | |
dc.relation | [13]. Armenta, S., Garrigues, S., Esteve-Turrillas, F. A., & Guardia, M. de la. (2019). Green extraction techniques in green analytical chemistry. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2019.03.016 | |
dc.relation | [14]. Arroyo, R., obtención de nitratos metálicos soportados en una bentonita de origen nacional (TAFF), su aplicación en la síntesis de disulfuros orgánicos con posible actividad biológica. (2008) | |
dc.relation | [15]. Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–2148. doi:10.1021/ac00218a019 | |
dc.relation | [16]. Arzate, S., Pfister, S., Oberschelp, C., & Sánchez-Pérez, J. A. (2019). Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.07.378 | |
dc.relation | [17]. Aufartová, J., Mahugo-Santana, C., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., Nováková, L., & Solich, P. (2011). Determination of steroid hormones in biological and environmental samples using green microextraction techniques: An overview. Analytica Chimica Acta, 704(1-2), 33–46. doi:10.1016/j.aca.2011.07.030 | |
dc.relation | [18]. Avberšek, M., Šömen, J., & Heath, E. (2011). Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant. Journal of Environmental Monitoring, 13(8), 2221. doi:10.1039/c1em10147a | |
dc.relation | [19]. Awad, W. H., Gilman, J. W., Nyden, M., Harris, R. H., Sutto, T. E., Callahan, J., … Fox, D. M. (2004). Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochimica Acta, 409(1), 3–11. doi:10.1016/s0040-6031(03)00334-4 | |
dc.relation | [20]. Bailey, G.W., White, J.L., 1970. Factors influencing the adsorption, desorption, and movement of pesticides in soils. Residue Rev. 32, 29–92 | |
dc.relation | [21]. Baltussen, E., Sandra, P., David, F.,Cramers, C. (1999). Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. Journal of Microcolumn Separations, 11(10), 737–747. doi:10.1002/(sici)1520-667x(1999)11:10<737::aidmcs7>3.0.co;2-4 | |
dc.relation | [22]. Banjac Z, Ginebreda A, Kuzmanovic M, Marcé R, Nadal M, Riera JM, et al. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). Sci Total Environ. julio de 2015;520:241-52 | |
dc.relation | [23]. Becerra, M., Herrera, L., Richter, P. Ultrahigh- performance liquid chromatography ndash timeof-flight high resolution mass spectrometry to quantify acidic drugs in wastewater, Journal of Chromatography A (2015), http://dx.doi.org/10.1016/j.chroma.2015.10.071 | |
dc.relation | [24]. Beck, I.-C., Bruhn, R., Gandrass, J., & Ruck, W. (2005). Liquid chromatography–tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. Journal of Chromatography A, 1090(1-2), 98–106. doi:10.1016/j.chroma.2005.07.013 | |
dc.relation | [25]. Bedner M. y Mac Crehan W. 2006. Transformation of Acetaminophen by Chlorination Produces the Toxicants 1,4-Benzoquinone and N-Acetyl-p-benzoquinone Imine. Environ. Sci.Technol, 40:516–52240. | |
dc.relation | [25]. Bedner M. y Mac Crehan W. 2006. Transformation of Acetaminophen by Chlorination Produces the Toxicants 1,4-Benzoquinone and N-Acetyl-p-benzoquinone Imine. Environ. Sci.Technol, 40:516–52240. | |
dc.relation | [26]. Belfroid, A.C., Van der Horst, A., Vethaak, A.D., Schafer, A.J., Rijs, G.B.J., Wegener, J. and Cofino, W.P., Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci. Total Environ., 225, 101-108 (1999). | |
dc.relation | [27]. Benfenati, E., Porazzi, E., Bagnati, R., Forner, F., Pardo, M., Mariani, G., Fanelli, R. 2003. Organic tracers identification as convenient strategy in industrial landfills monitoring. Chemosphere 51:677-683 | |
dc.relation | [28]. Berger K, Petersen B, Buening-Pfaue H. Persistence of drugs occurring in liquid manure in the foo chain. Arch Lebensmittelhygiene 1986; 37(4):99–102 (in German). | |
dc.relation | [29]. Bila, D., Montalvão, A. F., Azevedo, D. de A., & Dezotti, M. (2007). Estrogenic activity removal of 17β-estradiol by ozonation and identification of by-products. Chemosphere, 69(5), 736–746. doi:10.1016/j.chemosphere.2007.05.016 | |
dc.relation | [30]. Birkett, J.W.; Lester, J.N. (2003) Endocrine Disrupters in Wastewater and Sludge Treatment Process, 1st ed.; Lewis Publishers. | |
dc.relation | [31]. Bitton, G. (2011) “Wastewater Microbiology,” 4th ed. Wiley-Liss, New York. | |
dc.relation | [32]. Bodzek, M., Dudziak, M. (2006). Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination, 198(1-3), 24–32. doi:10.1016/j.desal.2006.09.005 | |
dc.relation | [33]. Bruheim, I., Liu, X., Pawliszyn, J. (2003). Thin-Film Microextraction. Analytical Chemistry, 75(4), 1002–1010. doi:10.1021/ac026162q. | |
dc.relation | [34]. Bu, Q., Wang, B., Huang, J., Deng, S., & Yu, G. (2013). Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials, 262, 189–211. doi:10.1016/j.jhazmat.2013.08.040 | |
dc.relation | [35]. Bui, X.T., Vo, T.P.T., Ngo, H.H., Guo, W.S., Nguyen, T.T., (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ. 563–564, 1050–1067. https://doi.org/10.1016/j.scitotenv.2016.04.191 | |
dc.relation | [36]. Burkhardt-Holm, P. (2010). Endocrine Disruptors and Water Quality: A State-of-the-Art Review. International Journal of Water Resources Development, 26(3), 477–493. doi:10.1080/07900627.2010.489298 | |
dc.relation | [37]. Bystrzanowska, M., Tobiszewski, M. Multi-objective optimization of microextraction procedures, Trends in Analytical Chemistry, https://doi.org/10.1016/j.trac.2018.12.031. | |
dc.relation | [38]. Camejo Abreu, C. (2013). Modificación de arcillas comerciales y naturales para el diseño de nuevos sistemas catalíticos. Universidad de Alcalá Tesis doctoral. Departamento de Química. | |
dc.relation | [39]. Cañas, A., Valdebenito, S., & Richter, P. (2014). A new rotating-disk sorptive extraction mode, with a copolymer of divinylbenzene and N-vinylpyrrolidone trapped in the cavity of the disk, used for determination of florfenicol residues in porcine plasma. Analytical and Bioanalytical Chemistry, 406(8), 2205–2210. doi:10.1007/s00216-014-7628-8 | |
dc.relation | [40]. Cañas, A.,Richter,P.,Escandar, G. M. (2014). Chemometrics-assisted excitation–emission fluorescence spectroscopy on nylon-attached rotating disks. Simultaneous determination of polycyclic aromatic hydrocarbons in the presence of interferences. Analytica Chimica Acta, 852, 105–111. doi:10.1016/j.aca.2014.09.040 | |
dc.relation | [41]. Carasek, E., Merib, J. (2015). Membrane-based microextraction techniques in analytical chemistry: A review. Analytica Chimica Acta, 880, 8–25. doi:10.1016/j.aca.2015.02.049 | |
dc.relation | [42]. Carballa, M., Omila, F., Lemaa, M., Llompartb, M., Garcıa-Jaresb, C., Rodrıguez, I ., Gomez, M., Ternesd T., Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research 38 (2004) 2918–2926 | |
dc.relation | [43]. Chang, H.-M., Sun, Y.-C., Chien, I.-C., Chang, W.-S., Ray, S. S., Cao, D. T. N., … Chen, S.-S. (2019). Innovative upflow anaerobic sludge osmotic membrane bioreactor for wastewater treatment. Bioresource Technology, 287, 121466. doi:10.1016/j.biortech.2019.121466 | |
dc.relation | [44]. Chen, C., Wen, T., Wang, G., Cheng, H., Lin, Y., & Lien, g. (2007). Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of The Total Environment, 378(3), 352–365. doi:10.1016/j.scitotenv.2007.02.038 | |
dc.relation | [45]. Chen, H.-C., Kuo, H.-W., & Ding, W.-H. (2009). Determination of estrogenic compounds in wastewater using liquid chromatography–tandem mass spectrometry with electrospray and atmospheric pressure photoionization following desalting extraction. Chemosphere, 74(4), 508– 514. doi:10.1016/j.chemosphere.2008.09 | |
dc.relation | [46]. Chichizola, C. (2004). Endocrine Disrupting Chemicals. Effects in the Reproduction. Revista Argentina de Endocrinología y Metabolismo, 78-95. | |
dc.relation | [47]. Chisato Takahashi, Takashi Shirai, Masayoshi Fuji. Selective intercalation of ionic liquid in montmorillonite and influence of water molecules. Solid State Ionics 267 (2014) 16–21 | |
dc.relation | [48]. Chiu, T. Y., Koh, Y. K. K., Paterakis, N., Boobis, A. R., Cartmell, E., Richards, K. H., Scrimshaw, M. D. (2009). The significance of sample mass in the analysis of steroid estrogens in sewage sludges and the derivation of partition coefficients in wastewaters. Journal of Chromatography A, 1216(24), 4923–4926. doi:10.1016/j.chroma.2009.04.019 | |
dc.relation | [49]. COM (2001) 262. EC (2001): Communication from the Commission to the Council and the European Parliament on the implementation of the Community Strategy for Endocrine Disrupters – a range of substances suspected of interfering with the hormone systems of humans and wildlife. | |
dc.relation | [50]. Contreras, L. M., Escolano, O., Rodriguez, O., Diaz, F.J., Perez, R., Garcia, S., Garcia, F.J. Estudios de adsorcion de fenantreno en diferentes tipos de arcillas. Informe técnico CIEMAT (1012, sept-2003) | |
dc.relation | [51]. Corley, J. (2003). Best practices in establishing detection and quantification limits for pesticide residues in foods. | |
dc.relation | [52]. Cuero, J. A., Grassi, M. T., Dolatto, R. G Palacio, A. M., Rosero-Moreano, M., Aristizábal, B. H. (2021). Impact of polycyclic aromatic hydrocarbons in mangroves from the Colombian pacific coast: evaluation in sediments and bivalves. Marine Pollution Bulletin, Volume 172. November 2021, 112828 https://doi.org/10.1016/j.marpolbul.2021.112828 | |
dc.relation | [53]. Danzer, K., & Currie, L. A. (1998). Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70(4), 993–1014. doi:10.1351/pac199870040993 | |
dc.relation | [54]. Dawidowicz, A. L., Szewczyk, J., & Dybowski, M. P. (2016). Modified application of HSSPME for quality evaluation of essential oil plant materials. Talanta, 146, 195–202. http://doi.org/10.1016/j.talanta.2015.08.043 | |
dc.relation | [55]. De Figueirêdo, J. M. R., Araújo, J. P., da Silva, I. A., Cartaxo, J. M., Neves, G. A., Ferreira, H. C. (2014). Purified Smectite Clays Organofilized with Ionic Surfactant for Use in Oil-Based Drilling Fluids. Materials Science Forum, 798-799, 21–26. doi:10.4028/www.scientific.net/msf.798- 799.21. | |
dc.relation | [56]. De Liz, M. V., do Amaral, B., Stets, S., Nagata, N., Peralta-Zamora, P. (2016). Sensitive Estrogens Determination in Wastewater Samples by HPLC and Fluorescence Detection. Journal of the Brazilian Chemical Society. doi:10.21577/0103-5053.20160324 | |
dc.relation | [57]. Deblonde , T., Leguille-Cossu, C., Harteman, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health 214 (2011) 442– 448 | |
dc.relation | [58]. Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening. Environmental Science & Technology, 32(11), 1549–1558. doi:10.1021/es9707973 | |
dc.relation | [59]. Duong, C. N., Ra, J. S., Cho, J., Kim, S. D., Choi, H. K., Park, J.-H., … Kim, S. D. (2010). Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere, 78(3), 286–293. doi:10.1016/j.chemosphere.2009.10.048 | |
dc.relation | [60]. Espino, M., de los Ángeles Fernández, M., Gomez, F. J. V., Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC Trends in Analytical Chemistry, 76, 126–136. http://doi.org/10.1016/j.trac.2015.11.006 | |
dc.relation | [61]. Estrada-Arriaga, Edson Baltazar, Mijaylova-Nacheva, Petia, Moeller-Chavez, Gabriela, MantillaMorales, Gabriela, Ramírez-Salinas, Norma, & Sánchez-Zarza, Manuel. (2013). Presencia y tratamiento de compuestos disruptores endócrinos en aguas residuales de la Ciudad de México empleando un biorreactor con membranas sumergidas. Ingeniería, investigación y tecnología, 14(2), 275-284. Recuperado en 19 de julio de 2021, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 77432013000200011&lng=es&tlng=es | |
dc.relation | [62]. Ferreira , Aldo P. (2017) Distribución de esteroides estrogénicos en plantas de tratamiento de aguas residuales municipales . Acta Toxicol. Argent. (2017) 25 (3): 80-90 | |
dc.relation | [63]. Ferreira, S. L., Lemos, V. A., de Carvalho, V. S., da Silva, E. G., Queiroz, A. F., Felix, C. S., Daniel L.F. daSilva, Gilson B. Dourado, Oliveira, R. V. Multivariate optimization techniques in analytical chemistry-an overview. Microchem. J. 140 (2018)176-182 | |
dc.relation | [64]. Finlay-Moore, O., Hartel, P. G., & Cabrera, M. L. (2000). 17β-Estradiol and Testosterone in Soil and Runoff from Grasslands Amended with Broiler Litter. Journal of Environment Quality, 29(5), 1604. doi:10.2134/jeq2000.00472425002900050030x | |
dc.relation | [65]. Fiscal, J. L., Obando, M. C., Rosero-Moreano M., Montaño, D., Cardona, W.G.,Richter, P. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction. Analytica Chimica Acta 953 (2017) 23-31 | |
dc.relation | [66]. Fiscal, John & Moreano, M.. (2017). Extracción de compuestos organoclorados usando una Membrana hueca como barra sólida “solid bar” mediante GC-ECD. Microciencia. 6. 01-10. 10.18041/2323-0320/microciencia.0.2017.3656. | |
dc.relation | [67]. Fiscal, J. (2016). Desarrollo de métodos de microextracción basados en barra de agitación para el análisis de compuestos organoclorados en muestras acuosas mediante cromatografía de gases (Tesis de Maestria). Universidad de Caldas. Manizales. | |
dc.relation | [68]. Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37, 61–72. doi:10.1016/j.trac.2012.03.013 | |
dc.relation | [69]. García-Gómez C, Gortáres-Moroyoqui P, Drogui P. Contaminantes emergentes: efectos y tratamientos de remoción Emerging contaminants: effects and removal treatments. Rev Quimica Viva. 2011; 10(2):96–105 | |
dc.relation | [70]. Gerba, C. P., Pepper, I. L. (2015). Municipal Wastewater Treatment. Environmental Microbiology, 583–606. doi:10.1016/b978-0-12-394626-3.00025-9 | |
dc.relation | [71]. Ghiselli, G. Avaliação da qualidade das águas destinadas ao abastecimento público na região de Campinas: ocorrência e determinação dos interferentes endócrinos (IE) e produtos farmacêuticos e de higiene pessoal (PFHP). 2006. 190 f. Tese (Doutorado em Química Analítica) - Instituto de Química, Universidade Estadual de Campinas, Campinas, 2006. | |
dc.relation | [72]. Gil, M. J.,Soto, A. M.,Usma, J. I., Gutierrez, O. D., Contaminantes emergentes en aguas, efectos y posibles tratamientos. (2012). Producción más limpia;7(2):52-73 | |
dc.relation | [73]. Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Batt, A. L., Benson, R., Boone, J. S., Wilson, V. S. (2017). Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of The Total Environment, 581-582, 909–922. doi:10.1016/j.scitotenv.2016.12.004 | |
dc.relation | [74]. Griffero, Luciana & Gomes, Giselle & Berazategui, M. & Fosalba, Claudia & Teixeira de Mello, Franco & Rezende, C.E. & Bila, Daniele & García-Alonso, J. (2018). Estrogenicity and cytotoxicity of sediments and water from the drinkwater source-basin of Montevideo city, Uruguay. Ecotoxicology and Environmental Contamination. 13. 15-22. 10.5132/eec.2018.01.02. | |
dc.relation | [75]. Grisales Penagos, Dayana, & Ortega López, Joela, & Rodriguez Chaparro, Tatiana (2012). Remoción de la materia orgánica y toxicidad en aguas residuales hospitalarias aplicando ozono. Dyna, 79(173),109-115.[fecha de Consulta 22 de Noviembre de 2021]. ISSN: 0012-7353. Disponible en: https://www.redalyc.org/articulo.oa?id=49623206014 | |
dc.relation | [76]. Guedes-Alonso. R, Sosa-Ferrera. Z, Santana-Rodríguez. J.J, Optimization of a solid-phase extraction procedure combined with ultra-high performance liquid chromatography and fluorescence detection to determine estrogens in wastewater samples, Luminescence 27 (2012) 560–561, doi:http://dx.doi.org/ 10.1002/bio.2432. | |
dc.relation | [77]. Ha, J. U., Xanthos, M. (2011). Sequential modification of cationic and anionic nanoclays with ionic liquids. Green Chemistry Letters and Reviews, 4(2), 103–107. doi:10.1080/17518253.2010.509111. | |
dc.relation | [78]. Hamid, H., & Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Research, 46(18), 5813–5833. doi:10.1016/j.watres.2012.08.002 | |
dc.relation | [79]. Hashimoto, T., Onda, K., Nakamura, Y., Tada, K., Miya, A., & Murakami, T. (2007). Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Research, 41(10), 2117–2126. doi:10.1016/j.watres.2007.02.029 | |
dc.relation | [80]. Hashimoto, T., & Murakami, T. (2009). Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Research, 43(3), 573–582. doi:10.1016/j.watres.2008.10.051 | |
dc.relation | [81]. He, K., Asada, Y., Echigo, S., & Itoh, S. (2018). Biodegradation of pharmaceuticals and personal care products in the sequential combination of activated sludge treatment and soil aquifer treatment. Environmental Technology, 1–11. doi:10.1080/09593330.2018.1499810 | |
dc.relation | [82]. Hegab, H. M., ElMekawy, A., van den Akker, B., Ginic-Markovic, M., Saint, C., Newcombe, G., & Pant, D. (2018). Innovative graphene microbial platforms for domestic wastewater treatment. Reviews in Environmental Science and Bio/Technology, 17(1), 147–158. doi:10.1007/s11157-018- 9459-0 | |
dc.relation | [83]. Hernando M, Heath E, Petrovic M, y Barcelo D. 2006. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Analytical and Bioanalytical Chemistry, 385:985-991 | |
dc.relation | [84]. Hernando, M., Mezcua, M., Fernandez Alba, A., & Barcelo, d. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342. doi:10.1016/j.talanta.2005.09.037 | |
dc.relation | [85]. Hirsch R, Ternes TA, Haberer K, Kratz KL. Determination of betablockers and bsympathomimetics in the aquatic environment. Vom Wasser 1996;87:263–74. | |
dc.relation | [86]. Horwitz W; Kamps L.R. y Boyer R.W.Quality Assurance in the Analysis of Foods for Trace Constituents. J. Assoc. Off. Anal.Chem., Vol. 63, No. 6, 1980; pp. 1344-1354 | |
dc.relation | [87]. Hoverstad, Carlstedt-Duke B, Lingaas E, Norin E,Saxerholt H, Stein-bakk M, Midtvedt T. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acidexcretion in healthy subjects. Scand J Gastroenterol 1986; 21:997–1003 | |
dc.relation | [88]. Huang, X., Chen, L., Yuan, D., Bi, S. (2012). Preparation of a new polymeric ionic liquid-based monolith for stir cake sorptive extraction and its application in the extraction of inorganic anions. Journal of Chromatography A, 1248, 67–73. doi:10.1016/j.chroma.2012.06.004 | |
dc.relation | [89]. Informe final Misión de Sabios por Caldas, III Cumbre, 27 de octubre de 2021, Canal Youtube de la Gobernación de Caldas, Link: https://www.youtube.com/watch?v=DJ8MDrKIyos (disponible 30 de octubre de 2021) | |
dc.relation | [90]. Ingerslev, F., Vaclavik, E., & Halling-Sørensen, B. (2003). Pharmaceuticals and personal care products - A source of endocrine disruption in the environment? Pure and Applied Chemistry, 75(11-12), 1881–1893. doi:10.1351/pac200375111881 | |
dc.relation | [91]. Jahr, D. (1998). Determination of alkyl, chloro and mononitrophenols in water by sampleacetylation and automatic on-line solid phase extraction-gas chromatography-mass spectrometry. Chromatographia, 47(1-2), 49–56. doi:10.1007/bf02466785 | |
dc.relation | [92]. Janex-Habibi, M.-L., Huyard, A., Esperanza, M., & Bruchet, A. (2009). Reduction of endocrine disruptor emissions in the environment: The benefit of wastewater treatment. Water Research, 43(6), 1565–1576. doi:10.1016/j.watres.2008.12.051 | |
dc.relation | [93]. Jansen, E. H. J. M., van Ginkel, L. A., van den Berg, R. H., Stephany, R. W. (1992). Highperformance liquid chromatographic separation and detection methods for anabolic compounds. Journal of Chromatography B: Biomedical Sciences and Applications, 580(1-2), 111–124. doi:10.1016/0378-4347(92)80531-t | |
dc.relation | [94]. Jensen RL, Schafer AI. Adsorption of estrone and 17b bestradiol by particulates—activated sludge, bentonite, hematite andcellulose . Recent Advances in Water Recycling Technologies Workshop, Brisbane, 26 November 2001, 93–102, ISBN 0 7334 1858 9 | |
dc.relation | [95]. Jiménez A.L. (2008). Disruptores Endocrinos en el medio ambiente: Caso del 17-a-etinil-estradiol. Observatorio Medioambiental, 63-76. | |
dc.relation | [96]. Johnson, A. C., & Chen, Y. (2017). Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish populations in the UK? Science of The Total Environment, 589, 89– 96. doi:10.1016/j.scitotenv.2017.02.1 | |
dc.relation | [97]. Joss, A., Andersen, H., Ternes, T., Richle, P. R., & Siegrist, H. (2004). Removal of Estrogens in Municipal Wastewater Treatment under Aerobic and Anaerobic Conditions: Consequences for Plant Optimization. Environmental Science & Technology, 38(11), 3047–3055. doi:10.1021/es0351488 | |
dc.relation | [98]. Kampa, E; Dworak, T; Laaser, C y Vidaurre, R. (2010). European Regulations. Chapter 17. En: K. Kümmerer, M. Hempel (eds.), Green and Sustainable Pharmacy. pp. 253 – 277. | |
dc.relation | [99]. Kaštelan-Macan, M., Ahel, M., Horvat, A. J. M., Jabučar, D., & Jovančić, P. (2007). Water resources and waste water management in Bosnia and Herzegovina, Croatia and the State Union of Serbia and Montenegro. Water Policy, 9(3), 319–343. doi:10.2166/wp.2007.003 | |
dc.relation | [100]. Kawaguchi, M., Inoue, K., Yoshimura, M., Ito, R., Sakui, N., Nakazawa, H. (2004). Determination of 4-nonylphenol and 4-tert.-octylphenol in water samples by stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. Analytica Chimica Acta, 505(2), 217–222. doi:10.1016/j.aca.2003.10.064 | |
dc.relation | [101]. Khanal, S. K., Xie, B., Thompson, M. L., Sung, S., Ong, S.-K., Van Leeuwen, J. (Hans). (2006). Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and Engineered Systems. Environmental Science & Technology, 40(21), 6537–6546. doi:10.1021/es0607739 | |
dc.relation | [102]. Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. doi:10.1016/j.watres.2006.06.034 | |
dc.relation | [103]. Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Whitehead, B. (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada — Occurrence and treatment efficiency. Science of The Total Environment, 409(8), 1481–1488. doi:10.1016/j.scitotenv.2011.01.010 | |
dc.relation | [104]. Knepper, T. ., Sacher, F., Lange, F. ., Brauch, H. ., Karrenbrock, F., Roerden, O., & Lindner, K. (1999). Detection of polar organic substances relevant for drinking water. Waste Management, 19(2), 77–99. doi:10.1016/s0956-053x(99)00003-3 | |
dc.relation | [105]. Koh, Y. K. K., Chiu, T. Y., Boobis, A., Cartmell, E., Lester, J. N., & Scrimshaw, M. D. (2007). Determination of steroid estrogens in wastewater by high performance liquid chromatography– tandem mass spectrometry. Journal of Chromatography A, 1173(1-2), 81–87. doi:10.1016/j.chroma.2007.09.074 | |
dc.relation | [106]. Koh, Y. K. K., Chiu, T. Y., Boobis, A., Cartmell, E., Scrimshaw, M. D., & Lester, J. N. (2008). Treatment And Removal Strategies For Estrogens From Wastewater. Environmental Technology, 29(3), 245 267. doi:10.1080/09593330802099122 | |
dc.relation | [107]. Kozlowska-Tylingo, K., Namieśnik, J., Górecki, T. (2010). Determination of Estrogenic Endocrine Disruptors in Environmental Samples—A Review of Chromatographic Methods. Critical Reviews in Analytical Chemistry, 40(3), 194–201. doi:10.1080/10408347.2010.490488 | |
dc.relation | [108]. Kuruto-Niwa, R., Ito, T., Goto, H., Nakamura, H., Nozawa, R., & Terao, Y. (2007). Estrogenic activity of the chlorinated derivatives of estrogens and flavonoids using a GFP expression system. Environmental Toxicology and Pharmacology, 23(1), 121–128. doi:10.1016/j.etap.2006.07.011 | |
dc.relation | [109]. Kuster, M., Azevedo, D. A., López de Alda, M. J., Aquino Neto, F. R., & Barceló, D. (2009). Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). Environment International, 35(7), 997–1003. doi:10.1016/j.envint.2009.04.006 | |
dc.relation | [110]. Kuster, M., López de Alda, M. J., Hernando, M. D., Petrovic, M., Martín-Alonso, J., & Barceló, D. (2008). Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of Hydrology, 358(1-2), 112–123. doi:10.1016/j.jhydrol.2008.05.030 | |
dc.relation | [111]. Kwon, J.-H., Wuethrich, T., Mayer, P., Escher, B. I. (2007). Dynamic Permeation Method To Determine Partition Coefficients of Highly Hydrophobic Chemicals between Poly(dimethylsiloxane) and Water. Analytical Chemistry, 79(17), 6816–6822. doi:10.1021/ac0710073 | |
dc.relation | [112]. Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2004). Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501(1), 79–88. doi:10.1016/j.aca.2003.09.020 | |
dc.relation | [113]. Lee, I.S., Lee, S.H., Oh, J.E., 2010. Occurrence and fate of synthetic musk compounds in water environment. Water Res. 44, 214–22 | |
dc.relation | [114]. Letaief, S., & Detellier, C. (2007). Nanohybrid materials from the intercalation of imidazolium ionic liquids in kaolinite. Journal of Materials Chemistry, 17(15), 1476. doi:10.1039/b616922h | |
dc.relation | [115]. Li, Y., Yue, Q., Li, W., Gao, B., Li, J., & Du, J. (2011). Properties improvement of paper mill sludge-based granular activated carbon fillers for fluidized-bed bioreactor by bentonite (Na) added and acid washing. Journal of Hazardous Materials, 197, 33–39. doi:10.1016/j.jhazmat.2011.09.050 | |
dc.relation | [116]. Li, Z., Jiang, W.-T., Chang, P.-H., Lv, G., & Xu, S. (2014). Modification of a Ca-montmorillonite with ionic liquids and its application for chromate removal. Journal of Hazardous Materials, 270, 169–175. doi:10.1016/j.jhazmat.2014.01.054 | |
dc.relation | [117]. Lintelmann, J., Katayama, A., Kurihara, N., Shore, L., & Wenzel, A. (2003). Endocrine disruptors in the environment (IUPAC Technical Report). Pure and Applied Chemistry, 75(5), 631–681. doi:10.1351/pac200375050631 | |
dc.relation | [118]. Liu, S., Ying, G.-G., Zhao, J.-L., Chen, F., Yang, B., Zhou, L.-J., Lai, H. (2011). Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1218(10), 1367–1378. doi:10.1016/j.chroma.2011.01.014 | |
dc.relation | [119]. Lucena, R. (2012). Extraction and stirring integrated techniques: examples and recent advances. Analytical and Bioanalytical Chemistry, 403(8), 2213–2223. doi:10.1007/s00216-012-5826-9 | |
dc.relation | [120]. M. de la Guardia, F.A. Esteve-Turrillas (eds), Handbook of Smart Materials in Analytical Chemistry (2019) John Wiley and Sons Ltd, Hoboken, USA. | |
dc.relation | [121]. Madejova. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31 (2003) 4 1–10. | |
dc.relation | [122]. Manikandan, S., Karmegam, N., Subbaiya, R., Karthiga Devi, G., Arulvel, R., Ravindran, B., & Kumar Awasthi, M. (2020). Emerging nano-structured innovative materials as adsorbents in wastewater treatment. Bioresource Technology, 124394. doi:10.1016/j.biortech.2020.124394 | |
dc.relation | [123]. Manzo, V., Goya-Pacheco, J., Arismendi, D., Becerra-Herrera, M., Castillo-Aguirre, A., CastilloFelices, R.,Richter, P. (2019). Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Analytica Chimica Acta. doi:10.1016/j.aca.2019.08.069 | |
dc.relation | [124]. Manzo, V., Honda, L., Navarro, O., Ascar, L., Richter, P. (2014). Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction. Talanta, 128, 486–492. doi:10.1016/j.talanta.2014.06.003 | |
dc.relation | [125]. Manzo, V., Miró, M., Richter, P. (2014). Programmable flow-based dynamic sorptive microextraction exploiting an octadecyl chemically modified rotating disk extraction system for the determination of acidic drugs in urine. Journal of Chromatography A, 1368, 64–69. doi:10.1016/j.chroma.2014.09.079 | |
dc.relation | [126]. Manzo, V., Ulisse, K., Rodríguez, I., Pereira, E.,Richter, P. (2015). A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater. Analytica Chimica Acta, 889, 130– 137. doi:10.1016/j.aca.2015.07.038 | |
dc.relation | [127]. Markiewicz , M., Wojciech, M., Kurosch, R., Thoming , J., Hupka , J., Jungnickel, C., Changes in zeta potential of imidazolium ionic liquids modified minerals – Implications for determining mechanism of adsorption. Chemosphere 90 (2013) 706–712 | |
dc.relation | [128]. McVey, E. (2012). Regulation of Pharmaceuticals in the Environment: The USA. Human Pharmaceuticals in the Environment: 49 Current and Future Perspectives, Emerging Topics in Ecotoxicology 4. pp. 49-61. | |
dc.relation | [129]. Min, Y., Zhou, Y., Zhang, M., Qiao, H., Huang, Q., & Ma, T. (2015). Removal of ionic liquid by engineered bentonite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 53, 153–159. doi:10.1016/j.jtice.2015.02.028 | |
dc.relation | [130]. Molina Molina, J., Hillenweck, A., Jouanin , I., Zalko, D., Cravedi, J., Fernández, M., Balaguer, p. (2006). Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicology and Applied Pharmacology, 216(1), 44–54. doi:10.1016/j.taap.2006.04.005 | |
dc.relation | [131]. Montagner CC, Jardim WF. Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, São Paulo State (Brazil). J Braz Chem Soc. 2011; 22(8):1452–1462 | |
dc.relation | [132]. Montaño, Diego F., Rosero-Moreano, Milton, & Torres Palma, Ricardo. (2019). Arcillas activadas para el blanqueamiento del aceite de palma y remoción del colorante azul índigo carmín del agua. Producción + Limpia, 14(2), 21-29. Epub October 30, 2020.https://doi.org/10.22507/pml.v14n2a2 | |
dc.relation | [133]. Montaño, Diego F., Herley Casanova., Wilson L. Cardona., Luis F. Giraldo, Functionalization of Montmorillonite with Ionic Liquids Based on 1-Alkyl-3-Methylimidazolium: Effect of anion and length chain., Materials Chemistry and Physics (2017), doi: 10.1016/j.matchemphys. 2017.06.027 | |
dc.relation | [134]. Moreno-Ortiz, Victor; Martínez-Núñez, Juan; Kravzov-Jinich, Jaime; Pérez-Hernández, Luis; Moreno-Bonett, Consuelo; Altagracia-Martínez; Marina (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmacéuticas, 44(4), 17–29 | |
dc.relation | [135]. Mrozik, W., Jungnickel, C., Skup, M., Urbaszek, P., Stepnowski, P., (2008). Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite. Environ. Chem. 5, 299– 306 | |
dc.relation | [136]. Mrozik, W., Kotłowska, A., Kamysz, W., Stepnowski, P., (2012). Sorption of ionic liquids onto soils: experimental and chemometric studies. Chemosphere 88, 1202–1207. | |
dc.relation | [137]. Mudgal, Shailendra; De Toni, Arianna; Lockwood, Sarah; Salès, Katherine; Backhaus, Thomas; Halling Bent (2013). Study on the environmental risks of medicinal products Executive. Francia: Bio Intelligence Service. | |
dc.relation | [138]. Neng, N. R., Mestre, A. S., Carvalho, A. P., & Nogueira, J. M. F. (2011). Powdered activated carbons as effective phases for bar adsorptive micro-extraction (BAμE) to monitor levels of triazinic herbicides in environmental water matrices. Talanta, 83(5), 1643–1649. doi:10.1016/j.talanta.2010.11.049 | |
dc.relation | [139]. Nimrod, A., & Benson, W. (1998). Reproduction and development of Japanese medaka following an early life stage exposure to xenoestrogens. Aquatic Toxicology, 44(1-2), 141–156. doi:10.1016/s0166-445x(98)00062-9 | |
dc.relation | [140]. Noack, K., Schulz, P. S., Paape, N., Kiefer, J., Wasserscheid, P., & Leipertz, A. (2010). The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Physical Chemistry Chemical Physics, 12(42), 14153. doi:10.1039/c0cp00486c | |
dc.relation | [141]. Obando, M., Cardenas, V., Casanova, H., Montaño, D., Giraldo, L., Cardona, W., RoseroMoreano, M. (2016). Arcillas naturales funcionalizadas con líquidos iónicos para microextracción de Ocratoxina A por membrana hueca empacada. Scientia Chromatographica. 8. 129-136. 10.4322/sc.2016.024. | |
dc.relation | [142]. Obando-Ceballos, M. N. (2020). Funcionalización de Arcillas Naturales con líquidos iónicos como adsorbentes en microextracción en fase sólida para la determinación de contaminantes de preocupación emergente. Universidad de Caldas. Facultad de Ciencias Exactas y Naturales. | |
dc.relation | [143]. Pa. Wu, M.Y. Zhang, J. Wang, F. Liu, S.X. Song, Application of CPAM-bentonitemicro-particle system in papermaking with using fly ash based calciumsilicate as filler, Chung-kuo Tsao Chih/China Pulp and Paper 32 (2013) 5–10. | |
dc.relation | [144]. Panter, G. H., Thompson, R. S., Beresford, N., & Sumpter, J. P. (1999). Transformation of a nonoestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere, 38(15), 3579–3596. doi:10.1016/s0045-6535(98)00572-4 | |
dc.relation | [145]. Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry, 29(7), 617–628. http://doi.org/10.1016/j.trac.2010.02.016 | |
dc.relation | [146]. Peñalver Hernando, Alejandra María. Aplicación de la microextracción en fase sólida al análisis medioambiental. Departament de Química Analítica y Química Orgànica. Universitat Rovira i Virgili. Tarragona, 2002 | |
dc.relation | [147]. Pereira, R. O., Postigo, C., de Alda, M. L., Daniel, L. A., Barceló, D. (2011). Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere, 82(6), 789–799. doi:10.1016/j.chemosphere.2010.10.082 | |
dc.relation | [148]. Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. (2016) Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatog. A., 1431, 64-78 | |
dc.relation | [149]. Petrovic, M. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry, 22(10), 685–696. doi:10.1016/s0165- 9936(03)01105-1 | |
dc.relation | [150]. Petrovic, M., Eljarrat, E., Lopez de Alda, M. J., & Barceló, D. (2004). Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Analytical and Bioanalytical Chemistry, 378(3), 549–562. doi:10.1007/s00216-003-2184-7 | |
dc.relation | [151]. Petrovic, M., Solé, M., López De Alda, M. J., & Barceló, D. (2002). Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on feral carp. Environmental Toxicology and Chemistry, 21(10), 2146–2156. doi:10.1002/etc.5620211018 | |
dc.relation | [152]. Pignatello, J.J., Xing, B., 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11. | |
dc.relation | [153]. Plonait, S., Nau, H., Maier, R., Wittfoht, W., & Obladen, M. (1993). Exposure of newborn infants to di-(2-ethylhexyl)-phthalate and 2- ethylhexanoic acid following exchange transfusion with polyvinylchloride catheters. Transfusion, 33(7), 598–605. doi:10.1046/j.1537- 2995.1993.33793325058.x | |
dc.relation | [154]. Płotka. W., J, Szczepan. N., De la Guardia, M., & Namiesnik. J. (2015). Miniaturized solid-phase extraction techniques. Trends in Analytical Chemistry 73 (2015); 19–38. Department of Analytical Chemistry, Faculty of Chemistry, Gdan´sk University of Technology, 11/12 Narutowicza Street, Gdan´sk 80-233, Poland. | |
dc.relation | [155]. Prieto, A., Basauri, O., Rodil, R., Usobiaga, A., Fernández, L. A., Etxebarria, N., & Zuloaga, O. (2010). Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. Journal of Chromatography A, 1217(16), 2642–2666. doi:10.1016/j.chroma.2009.12.051. | |
dc.relation | [156]. Prieto, P. C. (2013). Implementación de la técnica "Yeast estrogen screen" para evaluar la presencia de sustancias estrogenicas en agua. Bogotá: Universidad Nacional. | |
dc.relation | [157]. R. 2115/2007. Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano. Bogotá D.C. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 23 p. | |
dc.relation | [158]. Raman, D.R., Williams, E.L., Layton, A.C., Burns, R.T., Easter, J.P., Daugherty, A.S., Mullen, M.D., Sayler, G.S., 2004. Estrogen content of dairy and swine wastes. Environ. Sci. Technol. 38, 3567–3573 | |
dc.relation | [159]. Ramos Alvariño, Caridad, & Espinosa Lloréns, María del C., & López Torres, Matilde, & Pellón Arrechea, Alexis (2005). Tratamiento de las aguas residuales provenientes de la industria de medicamentos. Revista CENIC. Ciencias Químicas, 36(1), 39-44.[fecha de Consulta 26 de Agosto de 2021]. ISSN: 1015-8553. Disponible en: https://www.redalyc.org/articulo.oa?id=181620586009 | |
dc.relation | [160]. Ramsey, E. D., Minty, B., & Rees, A. T. (1997). Drugs in Water: Analysis at the Part-per-billion Level Using Direct Supercritical Fluid Extraction of Aqueous Samples Coupled On-line With Ultraviolet–Visible Diode-Array Liquid Chromatography–Mass Spectrometry. Analytical Communications, 34(9), 261–264. doi:10.1039/a704901c | |
dc.relation | [161]. Ribeiro, C., Tiritan, M. E., Rocha, E., Rocha, M. J. (2007). Development and Validation of a HPLC‐DAD Method for Determination of Several Endocrine Disrupting Compounds in Estuarine Water. Journal of Liquid Chromatography & Related Technologies, 30(18), 2729–2746. doi:10.1080/10826070701560652 | |
dc.relation | [162]. Richter, P., Cañas, A., Muñoz, C., Leiva, C., Ahumada, I. (2011). Rotating disk sorbent extraction for pre-concentration of chromogenic organic compounds and direct determination by solid phase spectrophotometry. Analytica Chimica Acta, 695(1-2), 73–76. doi:10.1016/j.aca.2011.04.009 | |
dc.relation | [160]. Ramsey, E. D., Minty, B., & Rees, A. T. (1997). Drugs in Water: Analysis at the Part-per-billion Level Using Direct Supercritical Fluid Extraction of Aqueous Samples Coupled On-line With Ultraviolet–Visible Diode-Array Liquid Chromatography–Mass Spectrometry. Analytical Communications, 34(9), 261–264. doi:10.1039/a704901c | |
dc.relation | [161]. Ribeiro, C., Tiritan, M. E., Rocha, E., Rocha, M. J. (2007). Development and Validation of a HPLC‐DAD Method for Determination of Several Endocrine Disrupting Compounds in Estuarine Water. Journal of Liquid Chromatography & Related Technologies, 30(18), 2729–2746. doi:10.1080/10826070701560652 | |
dc.relation | [162]. Richter, P., Cañas, A., Muñoz, C., Leiva, C., Ahumada, I. (2011). Rotating disk sorbent extraction for pre-concentration of chromogenic organic compounds and direct determination by solid phase spectrophotometry. Analytica Chimica Acta, 695(1-2), 73–76. doi:10.1016/j.aca.2011.04.009 | |
dc.relation | [163]. Richter, P., Leiva, C., Choque, C., Giordano, A., Sepúlveda, B. (2009). Rotating-disk sorptive extraction of nonylphenol from water samples. Journal of Chromatography A, 1216 (49), 8598– 8602. doi:10.1016/j.chroma.2009.10.044 | |
dc.relation | [164]. Corrotea, Y., Aguilera, N., Honda, L., & Richter, P. (2015). Determination of Hormones in Wastewater Using Rotating Disk Sorptive Extraction and Gas Chromatography–Mass Spectrometry. Analytical Letters, 49(9), 1344–1358. doi:10.1080/00032719.2015.1098653 | |
dc.relation | [165]. Ríos-Gómez, J., Fresco-Cala, B., García-Valverde, M., Lucena, R., & Cárdenas, S. (2018). Carbon Nanohorn Suprastructures on a Paper Support as a Sorptive Phase. Molecules, 23(6), 1252. doi:10.3390/molecules23061252 | |
dc.relation | [166]. Ríos-Gómez, J., Lucena, R., & Cárdenas, S. (2017). Paper supported polystyrene membranes for thin film microextraction. Microchemical Journal, 133, 90–95. doi:10.1016/j.microc.2017.03.026 | |
dc.relation | [167]. Rodríguez-Gómez, R., Zafra-Gómez, A., Camino-Sánchez, F. J., Ballesteros, O., & Navalón, A. (2014). Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in human breast milk after stir-bar sorptive extraction. Journal of Chromatography A, 1349, 69–79. doi:10.1016/j.chroma.2014.04.100 | |
dc.relation | [168]. Rosero-Moreano M, Peña A, Valencia J, Barreto G, Urrutia I, Fagua J, et al. Epidemiología de las aguas residuales para estimar consumo de drogas de abuso. Revista Química e Industria. 2021;33(1):25–32. | |
dc.relation | [169]. Rusina, T. P., Smedes, F., Klanova, J., Booij, K., Holoubek, I. (2007). Polymer selection for passive sampling: A comparison of critical properties. Chemosphere, 68(7), 1344–1351. doi:10.1016/j.chemosphere.2007.01.025 | |
dc.relation | [170]. Rykowska, I., Ziemblińska, J., Nowak, I. (2018). Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. Journal of Molecular Liquids, 259, 319–339. doi:10.1016/j.molliq.2018.03.043 | |
dc.relation | [171]. Saeed T., Al-Jandal N., Abusam A., Taqi H., Al-Khabbaz A., Zafar J. Sources and levels of endocrine disrupting compounds (EDCs) in Kuwait's coastal areas. Mar Pollut Bull. 2017;pii: S0025-326X(17)30216-3. | |
dc.relation | [172]. Sánchez-Martın, M.J., Dorado, M.C., Hoyo, C.d., Rodrıguez-Cruz, M.S., 2008. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J. Hazard. Mater. 150, 115–123 | |
dc.relation | [173]. Santos, L.H.M.L.M..; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barcel´o, D.; Montenegro, B.S.M. (2013) Contribution of Hospital Effluents to the Load of Pharmaceuticals in Urban Wastewaters: Identification of Ecologically Relevant Pharmaceuticals. Sci. Total Environ., 461–462, 302-316 | |
dc.relation | [174]. Senesi, N., 1992. Binding mechanisms of pesticides to soil humic substances. Sci. Total Environ. 123 (124), 63–76. | |
dc.relation | [175]. Serrano, M. F. Fernandez Cabrera, P. Martin Olmedo. (2001). Disruptores endocrinos. En caso particular de los xenobioticos estrogenicos y estrgenos naturales. Salud Ambiental, 6-1 | |
dc.relation | [176]. Sharma, B. M., Bharat, G. K., Tayal, S., Nizzetto, L., Čupr, P., & Larssen, T. (2014). Environment and human exposure to persistent organic pollutants (POPs) in India: A systematic review of recent and historical data. Environment International, 66, 48–64. doi:10.1016/j.envint.2014.01.022 | |
dc.relation | [177]. Silva, L; Lino, C; Meisel, L. & Pena, A. (2012).Ecopharmacovigilance. Pharmaceuticals in Drinking Water: 213–242. | |
dc.relation | [178]. Snyder, S. A., Keith, T. L., Verbrugge, D. A., Snyder, E. M., Gross, T. S., Kannan, K., Giesy, J. P. (1999). Analytical Methods for Detection of Selected Estrogenic Compounds in Aqueous Mixtures. Environmental Science & Technology, 33(16), 2814–2820. doi:10.1021/es981294f | |
dc.relation | [179]. Sornalingam, K., McDonagh, A., Zhou, J. L., Johir, M. A. H., & Ahmed, M. B. (2018). Photocatalysis of estrone in water and wastewater: Comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products. Science of The Total Environment, 610- 611, 521–530. doi:10.1016/j.scitotenv.2017.08.097 | |
dc.relation | [180]. Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Gooddy, D. C., Bell, R. A., Pedley, S. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51–63. doi:10.1016/j.watres.2014.08.002 | |
dc.relation | [181]. Souza Silva, E. A., Risticevic, S., & Pawliszyn, J. (2013). Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends in Analytical Chemistry, 43, 24–36. http://doi.org/10.1016/j.trac.2012.10.006 | |
dc.relation | [182]. Souza-Silva, É. A., Gionfriddo, E., Shirey, R., Sidisky, L., & Pawliszyn, J. (2016). Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications. Analytica Chimica Acta, 920, 54–62. doi:10.1016/j.aca.2016.03.015 | |
dc.relation | [183]. Spietelun, A., Marcinkowski, Ł., de la Guardia, M., & Namieśnik, J. (2013). Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. Journal of Chromatography A, 1321, 1–13. http://doi.org/10.1016/j.chroma.2013.10.030 | |
dc.relation | [184]. Stashenko, E.,Martinez, J. R. (2011). Preparación de la muestra: un paso crucial para el análisis por GC-MS. Scientia Chromatographica 2011; 3(1):25-49. Instituto Internacional de CromatografiA. UIS, Bucaramanga, Colombia. | |
dc.relation | [185]. Stepnowski, P., Mrozik, W., Nichthauser, J., 2007. Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ. Sci. Technol. 41, 511–516. | |
dc.relation | [186]. Stuart, M., Lapworth, D., Crane, E., & Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater. Science of The Total Environment, 416, 1–21. doi:10.1016/j.scitotenv.2011.11.072 | |
dc.relation | [187]. Sun, L., Yong, W., Chu, X., & Lin, J.-M. (2009). Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1216(28), 5416– 5423. doi:10.1016/j.chroma.2009.05.041 | |
dc.relation | [188]. Sun, T.-T. (2004). Excessive trust in authorities and its influence on experimental design. Nature Reviews Molecular Cell Biology, 5(7), 577–581. doi:10.1038/nrm1429 | |
dc.relation | [189]. Tabak, H. H. , Bloomhuff, R. N. , and Bunch, R. L. (1981). Steroid hormones as water pollutants II. Studies on the persistence and stability of natural urinary and synthetic ovulation-inhibiting hormones in treated and untreated wastewaters. Dev. Ind. Microbiol. 22:457–519. | |
dc.relation | [190]. Tabak, H.;Bunch, H.L. (1970): Steroid hormones as water pollutants. I. Metabolism of natural and synthetic ovulation-inhibiting hormones by microorganisms of activated sludge and primary settled sewage. Dev. Ind. Microbiol.11, 367–376 | |
dc.relation | [191]. Takahashi, C., Shirai, T., & Fuji, M. (2014). Selective intercalation of ionic liquid in montmorillonite and influence of water molecules. Solid State Ionics, 267, 16–21. doi:10.1016/j.ssi.2014.09.001 | |
dc.relation | [192]. Takahashi, C., Shirai, T., Hayashi, Y., & Fuji, M. (2013). Study of intercalation compounds using ionic liquids into montmorillonite and their thermal stability. Solid State Ionics, 241, 53-61. https://doi.org/10.1016/j.ssi.2013.03.032 | |
dc.relation | [193]. Talu, O., & Meunier, F. (1996). Adsorption of associating molecules in micropores and application to water on carbon. AIChE Journal, 42(3), 809–819. doi:10.1002/aic.690420319 | |
dc.relation | [194]. Tamayo F., Turiel E., Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. Journal of Chromatography A, 1152 (2007) 32-40 | |
dc.relation | [195]. Teijon, G., Candela, L., Tamoh, K., Molina-Díaz, A., & Fernández-Alba, A. R. (2010). Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Science of The Total Environment, 408(17), 3584–3595. doi:10.1016/j.scitotenv.2010.04.041 | |
dc.relation | [196]. Ternes, T. ., Stumpf, M., Mueller, J., Haberer, K., Wilken, R.-D., & Servos, M. (1999). Behavior and occurrence of estrogens in municipal sewage treatment plants — I. Investigations in Germany, Canada and Brazil. Science of The Total Environment, 225(1-2), 81–90. doi:10.1016/s0048- 9697(98)00334-9 . | |
dc.relation | [197]. Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. Water Research, 32(11), 3245–3260. doi:10.1016/s0043-1354(98)00099-2 | |
dc.relation | [198]. Terri Damstra, Sue Barlow, Aake Bergman, Robert Kavlock, Glen Van Der Kraak. (2002). Global assesment of the statof the science o endocrine disruptors. World Health Organization. | |
dc.relation | [199]. Thomas, K. V., Dye, C., Schlabach, M., & Langford, K. H. (2007). Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. Journal of Environmental Monitoring, 9(12), 1410. doi:10.1039/b709745j | |
dc.relation | [200]. Tollefsen K.E., Harman C., Smith A., Thomas K.V. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms.Marine Pollution Bull. 2007; 54 :277-283. | |
dc.relation | [201]. Tombácz, E., Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27(1-2), 75–94. doi:10.1016/j.clay.2004.01.001 | |
dc.relation | [202]. Ulisse, K. Microextracción de fármacos antiinflamatorios no esteroidales desde matrices acuosas usando polímero de impresión molecular inmovilizado en un sistema de disco rotatorio. Universidad de Chile. 2014 | |
dc.relation | [203]. Unión Europea. (2001). Decisión No 2455/2001/CE del Parlamento Europeo y del Consejo de 20 de noviembre de 2001 por la que se aprueba la lista de sustancias prioritarias en el ámbito de la política de aguas. Diario Oficial de las Comunidades Europeas. L331/1: 1-5. | |
dc.relation | [204]. Unión Europea. (2013). Directiva 2013/39/UE del Parlamento Europeo y del Consejo, de 12 de agosto de 2013, por la que se modifican las Directivas 2000/60/CE y 2008/105/CE en cuanto a las sustancias prioritarias en el ámbito de la política de aguas. Diario Oficial de las Comunidades Europeas. 2013; L 226: p. 1-17. | |
dc.relation | [205]. USEPA. (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. U.S. Environmental Protection Agency Office of Water Office of Science and Technology Engineering and Analysis Division (4303T) 1200 Pennsylvania, NW Washington, DC. p. 72. | |
dc.relation | [206]. USEPA. (2014). Announcement of Preliminary Regulatory Determination for Contaminants on the Third Drinking Water Contaminant Candidate List. Federal Register. Vol. 79, No. 202, pp. 62716. | |
dc.relation | [207]. USEPA. (2015). Summary of Nominations for the Fourth Contaminant Candidate List. EPA 815- R-15-001. January, 2015. | |
dc.relation | [208]. Velasco, E., Ríos-Acevedo, J. J., Sarria-Villa, R., & Rosero-Moreano, M. (2021). Green method to determine triazine pesticides in water using Rotating Disk Sorptive Extraction (RDSE). Heliyon, 7(9), e07878. doi:10.1016/j.heliyon.2021.e07878 | |
dc.relation | [209]. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48(3), 291–295. doi:10.1016/j.clay.2010.01.007 | |
dc.relation | [210]. Vulliet, E., Baugros, J.-B., Flament-Waton, M.-M., Grenier-Loustalot, M.-F. (2007). Analytical methods for the determination of selected steroid sex hormones and corticosteriods in wastewater. Analytical and Bioanalytical Chemistry, 387(6), 2143–2151. doi:10.1007/s00216-006-1084-z | |
dc.relation | [211]. Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research, 16(3), 278–286. doi:10.1007/s11356-009-0107-7 | |
dc.relation | [212]. Weinhold, Bob. (2010). Los glaciares en proceso de derretimiento liberan tóxicos congelados. Salud Pública de México, 52(2), 170-184. Recuperado en 02 de septiembre de 2021, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036- 36342010000200012&lng=es&tlng=es | |
dc.relation | [213]. Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., & Oh, J.-E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179–186. doi:10.1016/j.chemosphere.2010.10.026 | |
dc.relation | [214]. Wu, L., Liao, L., Lv, G., Qin, F., & Li, Z. (2014). Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite. Chemical Engineering Journal, 236, 306–313. doi:10.1016/j.cej.2013.09.063 | |
dc.relation | [215]. Xing, B., Dong, J., Yang, G., Jiang, N., Liu, X., & Yuan, J. (2020). An insight into N,S-codoped activated carbon for the catalytic persulfate oxidation of organic pollutions in water: effect of surface functionalization. Applied Catalysis A: General, 117714. doi:10.1016/j.apcata.2020.117714 | |
dc.relation | [216]. Yang, Q., Gao, M., Luo, Z., & Yang, S. (2016). Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain. Chemical Engineering Journal, 285, 27–38. doi:10.1016/j.cej.2015.09.114 | |
dc.relation | [217]. Ye, X., Guo, X., Cui, X., Zhang, X., Zhang, H., Wang, M. K., … Chen, S. (2012). Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China. Journal of Environmental Monitoring, 14(8), 2204. doi:10.1039/c2em30258f | |
dc.relation | [218]. Ying, G.G .,Rai, S. K., Kumar , A., Mortimer, M. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland .Science of the Total Environment 407 (2009) 5147–5155 | |
dc.relation | [219]. Ying, G.-G., Kookana, R. S., & Ru, Y.-J. (2002). Occurrence and fate of hormone steroids in the environment. Environment International, 28(6), 545–551. doi:10.1016/s0160-4120(02)00075-2 | |
dc.relation | [220]. Yoshimoto, T., Nagai, F., Fujimoto, J., Watanabe, K., Mizukoshi, H., Makino, T., Kimura, K., Saino, H., Sawada, H. and Omura, H., Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl. Environ. Microbiol., 70, 5283-5289 (2004). | |
dc.relation | [221]. Young W F, Whitehouse P, Johnson I, Sorokin N, 2002. Proposed predicted-no-effectconcentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. Environment Agency R&D Technical Report P2-T04/1. England and Wales Environment Agency Bristol; 172 | |
dc.relation | [222]. Zhang, M., Shi, Y., Lu, Y., Johnson, A. C., Sarvajayakesavalu, S., Liu, Z., … Jin, X. (2017). The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China. Science of The Total Environment, 590-591, 633–642. doi:10.1016/j.scitotenv.2017.03.011 | |
dc.relation | [224]. Zheng, W., Yates, S. R., & Bradford, S. A. (2008). Analysis of Steroid Hormones in a Typical Dairy Waste Disposal System. Environmental Science & Technology, 42(2), 530–535. doi:10.1021/es071896b | |
dc.relation | [225]. Zielke, R.C, Pinnavaia, T.J, Modified clays for the adsorption of environmental toxicants: binding of chlorophenols to pillared, delaminated, and hydroxyinterlayered smectites, Clay Clay Min. 36 (1988) 403e408 | |
dc.relation | [226]. Zuluaga, C. U. (24 de 05 de 2017). La orina y otros contaminantes emergentes. El espectador, pág. 2. | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.subject | Aguas residuales | |
dc.subject | Análisis químico | |
dc.subject | Contaminación | |
dc.subject | Líquido iónico | |
dc.subject | Contaminante emergente | |
dc.subject | Hormonas estrogénicas | |
dc.subject | Montmorillonita | |
dc.subject | Arcilla natural | |
dc.subject | Extracción por adsorción con disco rotatorio | |
dc.title | Implementación de la técnica de extracción por adsorción con disco rotatorio usando un eco-sorbente con arcillas modificadas para el análisis de estrógenos en efluentes hospitalarios por medio de cromatografía de líquidos | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | https://purl.org/redcol/resource_type/TM | |
dc.type | info:eu-repo/semantics/publishedVersion | |