dc.contributorSánchez Toro, Óscar Julián
dc.contributorAlimentos y Agroindustria (Categoría A1)
dc.contributorÓscar Julián Sánchez Toro
dc.contributorLuis Gerónimo Matallana Pérez
dc.creatorGÓMEZ SOTO, JAMES ANDRÉS
dc.date2023-02-10T21:28:02Z
dc.date2025-12-31
dc.date2023-02-10T21:28:02Z
dc.date2023-02-10
dc.date.accessioned2023-09-06T18:33:24Z
dc.date.available2023-09-06T18:33:24Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18776
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8699177
dc.descriptionIlustraciones, gráficas
dc.descriptionspa:La tesis se centra en el diseño y la evaluación sostenible (tecno-económica, social y ambiental) de una biorrefinería de segunda generación multi-entrada para la valorización de los residuos de la agroindustria del plátano. Los datos obtenidos de fuentes primarias y secundarias se utilizaron para construir y evaluar el diseño. Para el diseño también se utilizó la investigación en silico combinada con la investigación aplicada realizada en los laboratorios de la Universidad de Caldas (Unidad Tecnología de Alimentos y la Planta de Bioprocesos y Agroindustria) y la Universidade do Minho (Centro de Ingeniería Biológica). El procedimiento general de síntesis de procesos basado en el conocimiento propuesto por Douglas (1985) con elementos del modelo de descomposición de cebolla propuesto por Smith (2005) se aplicaron en los diagramas. Los softwares matemáticos y de simulación como SuperPro Designer, Matlab y WAR, entre otros, también se utilizaron en el diseño y la evaluación de la biorrefinería. Este diseño y la evaluación mostraron que la mejor alternativa para una biorrefinería multi-entrada es procesar los residuos de la agroindustria del plátano mediante dos corrientes (lignocelulósica y amilácea) distribuidas en diferentes porcentajes para lograr una mayor rentabilidad de los productos. Esta tesis aportó conocimientos para los sectores agrícola, agroindustrial y académico sobre nuevos métodos (diseños y evaluaciones de procesos integrados en una biorrefinería sostenible) para la valorización de los residuos de plátano; demostrando que es rentable implementar este tipo de proceso en lugares con alta producción de este tipo de residuos.
dc.descriptioneng:The thesis focuses on the design and sustainable assessment (techno-economic, social and environmental) of a second–generation multi-input biorefinery for the valorization of waste from plantain agro-industry. The data obtained from primary and secondary sources were used to build and assess the design. In silico research combined with applied research carried out at the University of Caldas (Bioprocess and Agroindustry Plant and Food Technology Unit laboratories) and the University of Minho (Centre of Biological Engineering) was also used for the design. The general knowledge-based process synthesis procedure proposed by Douglas (1985) with elements of the onion–based decomposition model proposed by Smith (2005) were applied in the diagrams and process flowsheets. Mathematical and simulation software such as SuperPro Designer, Matlab, and WAR, among others, were also utilized in the design, and the biorefinery assessment. This design and the assessment showed that the best alternative for a multi-input biorefinery is to process the waste from the plantain agro-industry by two streams (lignocellulosic and starchy) distributed in different percentages to achieve greater profitability from the products. This thesis contributed with knowledge for the agricultural, agro-industrial, and academic sectors on new methods (designs and assessments of processes integrated into a sustainable biorefinery) for the valorization of plantain waste; demonstrating that it is profitable to implement this type of process in the field with high production of this type of waste.
dc.descriptionChapter 1. Introduction / 1.1. Focus área / 1.2. Problem statement / 1.3. Justification / 1.4. Aims 1.4.1. General objective / 1.4.1. Specific aims / 1.5. Document structure / 1.6. References / Chapter 2. Literature review (theoretical framework and background) / 2.1. Systematic review / 2.1.1. Introduction / 2.1.2. Research questions / 2.1.3. Search criteria / 2.1.4. Search methodology and analysis of the information / 2.1.5. Results / 2.1.6. Answers to research questions / 2.2. Waste from plantain agro-industry / 2.3. Biorefineries / 2.3.1. Concept y classification / 2.3.2. Process integration / 2.3.3. Conceptual design / 2.3.4. Biorefineries implemented / 2.4. Process engineering / 2.4.1. Process synthesis / 2.4.2. Process design / 2.5. Sustainable assessment / 2.5.1. Economic analysis / 2.5.2. Environmental analysis / 2.5.3. Social analysis / 2.6. Reference Chapter 3. Towards a biorefinery processing waste from plantain agro-industry: Assessment of the production of dairy cattle feed through process simulation / Chapter 4. Towards a biorefinery processing waste from plantain agro-industry: Process design and techno-economic assessment of single-cell protein, natural fibers, and biomethane production through process simulation / Chapter 5. Valorization of rejected unripe plantain fruits of Musa AAB Simmonds: From nutritional characterization to the conceptual process design for prebiotic production / Chapter 6. Towards a biorefinery processing waste from plantain agro-industry: Process development for the production of an isomalto-oligosaccharide syrup from rejected unripe plantain fruits / Chapter 7. A framework for the design of sustainable multi-input biorefineries through process simulation: A case study for the valorization of lignocellulosic and starchy waste from the plantain agro-industry / Chapter 8. Overall conclusions / Appendix
dc.descriptionDoctorado
dc.descriptionDoctor(a) en Ingeniería
dc.descriptionBiotecnología Agroindustrial y Ambiental
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ingeniería
dc.publisherManizales
dc.publisherDoctorado en Ingeniería
dc.relationAdoki A. (2008). Factors affecting yeast growth and protein yield production from orange, plantain and banana wastes processing residues using Candida sp. African Journal of Biotechnology, 7(3): 290-295.
dc.relationAgama E., Sañudo J., Vélez de la Rocha R., González G., Bello L. (2015). Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA - Journal of Food, 14(1): 117-123. http://dx.doi.org/10.1080/19476337.2015.1055306
dc.relationAlnur Auli N., Sakinah M., Mustafa Al-Bakri A., Kamarudin H., Norazian M. (2013). Simulation of xylitol production: a review. Australian Journal of Basic and Applied Sciences, 7(5): 366-372.
dc.relationAlonso L., Solarte J., Bello L., Cardona C. (2020). Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food and Bioproducts Processing, 121: 29-42. https://doi.org/10.1016/j.fbp.2020.01.005
dc.relationAmadi P., Ogunka Nnoka C., Abbey B. (2019). Biotransformation of plantain pseudostem fibres using local enzyme sources; analysis of their potential as commercial poultry feed. Biocatalysis and Biotransformation, 37(3): 224-232. https://doi.org/10.1080/10242422.2018.1532412
dc.relationAristizábal V., Solarte J., Cardona C. (2020). Economic and social assessment of biorefineries: The case of coffee cut–stems (CCS) in Colombia. Bioresource Technology Reports, 9: 100397. https://doi.org/10.1016/j.biteb.2020.100397
dc.relationArvanitoyannis I., Tserkezou P. (2008). 10-Cereal Waste Management: Treatment Methods and Potential Uses of Treated Waste. In: Waste Management for the Food Industries. Arvanitoyannis I. (Ed.). Academic Press: Amsterdam, The Netherlands. pp. 629-702.
dc.relationAsocaña. (2017). Producción de BioEtanol. [Bioethanol production, in Spanish]. Asociación de Cultivadores de Caña de Azúcar de Colombia (Asocaña). Available on: https://n9.cl/o523. [Retrieved April 15 2017].
dc.relationAurore G., Parfait B., Fahrasmane L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science & Technology, 20(2): 78-91. https://doi.org/10.1016/j.tifs.2008.10.003
dc.relationBernier D., Rincón J., Solanilla J., Muñoz J., Váquiro H. (2018). Comparison of two pretreatments methods to produce second‒generation bioethanol resulting from sugarcane bagasse. Industrial Crops and Products, 122: 414-421. https://doi.org/10.1016/j.indcrop.2018.06.012
dc.relationBhardwaj N., Kumar B., Verma P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1): 40. https://doi.org/10.1186/s40643-019-0276-2
dc.relationBinod P., Pandey A. (2015). Pretreatment of Biomass. In: Pretreatment of Biomass. Processes and Technologies. Pandey A., Negi S., Binod P., Larroche C. (Eds.). Elsevier: Amsterdam, The Netherlands. pp. 7-25.
dc.relationBlanco G., Linares B., Hernández J., Maselli A., Rincón A., Ortega R., Medina E., Hernández L., Morillo J. (2013). Caracterización química de lixiviados de pseudotallos y láminas foliares de plátano "Hartón" en el estado Yaracuy. [Chemical characterization of leachates pseudostems and leaf blades of 'Harton' plantain in Yaracuy state, in Spanish]. Agronomía Tropical, 63: 121-134.
dc.relationCEPAL, DNP, CEMPRE. (2021). Encuesta a municipios sobre gestión de residuos sólidos domiciliarios 2019-Colombia. [Survey of municipalities on household solid waste management 2019-Colombia, in Spanish]. Comisión Económica para América Latina y el Caribe (CEPAL)/Departamento Nacional de Planeación de Colombia (DNP)/Compromiso Empresarial para el Reciclaje Colombia (CEMPRE): Santiago, Chile. 32 p. Available on: https://n9.cl/wr99g.
dc.relationChávez A., Bello L., Agama E., Castellanos F., Álvarez C., Pacheco G. (2017). Isolation and partial characterization of starch from banana cultivars grown in Colombia. International Journal of Biological Macromolecules, 98: 240-246. https://doi.org/10.1016/j.ijbiomac.2017.01.024
dc.relationCRC. (2001). Ley No. 693 de 2001. [Law No. 693, in Spanish]. Congreso de la República de Colombia (CRC). 2 p. https://n9.cl/x07f5y.
dc.relationDávila J., Hernández V., Castro E., Cardona C. (2014). Economic and environmental assessment of syrup production. Colombian case. Bioresource Technology, 161: 84-90. https://doi.org/10.1016/j.biortech.2014.02.131
dc.relationDaza L., Solarte J., Serna S., Chacon Y., Cardona C. (2016). Agricultural waste management through energy producing biorefineries: The colombian case. Waste and Biomass Valorization, 7(4): 789-798. https://doi.org/10.1007/s12649-016-9576-3
dc.relationde Jong E., Higson A., Walsh P., Wellisch M. (2012). Bio-based chemicals: Value added products from biorefineries. The International Energy Agency (IEA Bioenergy): Wageningen, The Netherlands. 36 p. Available on: https://n9.cl/g4vao.
dc.relationDemirbaş A. (2010). Biorefineries For Biomass Upgrading Facilities. Springer-Verlag: London, United Kingdom. 240 p.
dc.relationDovichi Filho F., Castillo Y., Silva E., Escobar J., Almazan del Olmo O. (2021). Evaluation of the maturity level of biomass electricity generation technologies using the technology readiness level criteria. Journal of Cleaner Production, 295: 126426. https://doi.org/10.1016/j.jclepro.2021.126426
dc.relationDuque M., Belmonte L., Cortés F., Camacho F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22: e00902. https://doi.org/10.1016/j.gecco.2020.e00902
dc.relationDuque S., Cardona C., Moncada J. (2015). Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy & Fuels, 29(2): 775-783. https://doi.org/10.1021/ef5019274
dc.relationElahi M., Yusuf A., Torshabi A., Fazaeli H., Dehghani M., Salem A. (2019). Ensiling pretreatment of banana waste by–products: Influences on chemical composition and environmental rumen biogas and fermentation. Waste and Biomass Valorization, 10: 3363-3371. https://doi.org/10.1007/s12649-018-0312-z
dc.relationEllen MacArthur. (2017). The Circular Economy in detail. Ellen MacArthur Foundation. Available on: https://n9.cl/swjc3. [Retrieved July 6 2022].
dc.relationErdei B., Barta Z., Sipos B., Réczey K., Galbe M., Zacchi G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels, 3(16): 1-9. https://doi.org/10.1186/1754-6834-3-16
dc.relationEscalante H., Orduz J., Zapata H., Cardona M., Duarte M. (2009). Atlas del potencial energético de la biomasa residual en Colombia. [Atlas of the energy potential of the residual biomass in Colombia, in Spanish]. Bogotá, Colombia. 182 p. Available on: https://bdigital.upme.gov.co/handle/001/1058.
dc.relationEurObserv'ER. (2020). Biofuels barometer 2020. EurObserv'ER: Frankfurt, Germany. 16 p. Available on: https://www.eurobserv-er.org/biofuels-barometer-2020/.
dc.relationEysseric E., Ghislain T., Duret X., Lalonde O., Segura P., Lavoie J. (2017). Effect of steam treatments on the availability of various families of secondary metabolites extracted from green sweet sorghum. Industrial Crops and Products, 104: 120-128. https://doi.org/10.1016/j.indcrop.2017.04.040
dc.relationFAO. (2022). FAOSTAT: Food and agriculture data. Food and Agriculture Organization (FAO). Available on: http://www.fao.org/faostat/es/#data. [Retrieved February 28 2022].
dc.relationGírio F., Marques S., Pinto F., Oliveira A., Costa P., Reis A., Moura P. (2017). Biorefineries in the World. In: Biorefineries. Targeting Energy, High Value Products and Waste Valorisation. Rabaçal M., Ferreira A., Silva C., Costa M. (Eds.). Springer: Cham, Switzerland. pp. 227-278.
dc.relationGiuliano A., Poletto M., Barletta D. (2016). Process optimization of a multi–product biorefinery: The effect of biomass seasonality. Chemical Engineering Research and Design, 107(Supplement C): 236-252. https://doi.org/10.1016/j.cherd.2015.12.011
dc.relationGutiérrez F., Guachamin D., Portilla A. (2017). Valoración nutricional de tres alternativas alimenticias en el crecimiento y engorde de cerdos (Sus scrofa domestica) Nanegal– Pichincha. [Nutrition valuation of three feeding alternatives in the growing and fattening of pigs (Sus scrofa domestica) Nanegal–Pichincha, in Spanish]. Revista de Ciencias de la Vida, La Granja, 26(2): 155-162. http://doi.org/10.17163/lgr.n26.2017.13
dc.relationHappi T., Andrianaivo R., Wathelet B., Tchango J., Paquot M. (2007). Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 103(2): 590-600. https://doi.org/10.1016/j.foodchem.2006.09.006
dc.relationIDB. (2015). Solid waste management in Latin America and the Caribbean. InterAmerican Development Bank (IDB),. Available on: https://n9.cl/q471f. [Retrieved January 18 2018].
dc.relationIEA Bioenergy. (2022). Global database of biomass conversion facilities. IEA Bioenergy. Available on: https://www.ieabioenergy.com/installations/. [Retrieved July 7 2022].
dc.relationJulio R., Albet J., Vialle C., Vaca C., Sablayrolles C. (2017). Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels, Bioproducts and Biorefining, 11(2): 373-395. https://doi.org/10.1002/bbb.1749
dc.relationJuturu V., Wu J. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33: 188-203. https://doi.org/10.1016/j.rser.2014.01.077
dc.relationKarimi K., Taherzadeh M. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200: 1008-1018. https://doi.org/10.1016/j.biortech.2015.11.022
dc.relationKatongole C., Sabiiti E., Bareeba F., Ledin I. (2011). Utilization of Market Crop Wastes as Animal Feed in Urban and Peri-Urban Livestock Production in Uganda. Journal of Sustainable Agriculture, 35(3): 329-342. https://doi.org/10.1080/10440046.2011.554318
dc.relationLennartsson P., Erlandsson P., Taherzadeh M. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology, 165: 3-8. https://doi.org/10.1016/j.biortech.2014.01.127
dc.relationMADR. (2004). Ley No. 939 de 2004. [Law No. 939 of 2004, in Spanish]. Ministerio de Agricultura y Desarrollo Rural de Colombia (MADR). 3 p. https://n9.cl/cjikj.
dc.relationMazzeo M., Alzate A., Marín M. (2008). Obtención de almidón a partir de residuos poscosecha del plátano Dominico–Hartón (Musa AAB Simmonds). [Obtaining starch from postharvest residues of the Dominico–Hartón plantain (Musa AAB Simmonds), in Spanish]. Vector, 3: 57-69. http://vector.ucaldas.edu.co/downloads/Vector3_6.pdf
dc.relationMazzeo M., León L., Mejía L., Guerrero L., Botero J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. [Industrial use of plantain harvest and post–harvest waste in the department of Caldas, in Spanish]. Revista de Educación en Ingeniería, 5(9): 128-139. http://dx.doi.org/10.26507/rei.v5n9.14
dc.relationMinAgricultura. (2018). Área, Producción y Rendimiento por Cultivo. [Area, production, and national yield by crop, in Spanish]. Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura). Available on: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. [Retrieved April 10 2022].
dc.relationMohapatra D., Mishra S., Sutar N. (2010). Banana and its by–product utilisation: an overview. Journal of Scientific & Industrial Research, 69: 323-329.
dc.relationMoncada J., Aristizábal V., Cardona C. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116(Supplement C): 122-134. https://doi.org/10.1016/j.bej.2016.06.009
dc.relationMontero G., Jaramillo E., Vázquez A., Coronado A., García C., Toscano L. (2017). Experiencias de aprovechamiento de residuos para la generación de biodiesel en Colombia y México. Revista Internacional De Contaminación Ambiental, 32: 77-90. https://doi.org/10.20937/RICA.2016.32.05.06
dc.relationMoran A. (2015). An Applied Guide to Process and Plant Design. Elsevier: Amsterdam, Netherlands. 378 p.
dc.relationNaranjo J., Cardona C., Higuita J. (2014). Use of residual banana for polyhydroxybutyrate (PHB) production: Case of study in an integrated biorefinery. Waste Management, 34(12): 2634-2640. https://doi.org/10.1016/j.wasman.2014.09.007
dc.relationNg D. (2010). Automated targeting for the synthesis of an integrated biorefinery. Chemical Engineering Journal, 162(1): 67-74. https://doi.org/10.1016/j.cej.2010.04.061
dc.relationPark S., Xu S., Rogers W., Pasman H., El-Halwagi M. (2020). Incorporating inherent safety during the conceptual process design stage: A literature review. Journal of Loss Prevention in the Process Industries, 63: 104040. https://doi.org/10.1016/j.jlp.2019.104040
dc.relationParra D., Solarte J., Cardona C. (2020). Techno-economic and environmental analysis of biogas production from plantain pseudostem waste in Colombia. Waste and Biomass Valorization, 11(7): 3161-3171. https://doi.org/10.1007/s12649-019-00643-8
dc.relationPerez L., Schreiber A., Schütt F., Saake B., Kirsch C., Smirnova I. (2013). Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect on cellulose, hemicellulose and lignin recovery. Bioresource Technology, 142: 428-435. https://doi.org/10.1016/j.biortech.2013.05.054
dc.relationPiedrahita S., Solarte J., Piñeres P., Ortiz M., Pérez A., Cardona C. (2022). Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: plantain and avocado integration in the Montes de María region. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02560-8
dc.relationPoveda J., Piedrahita S., Cardona C. (2021). Life cycle analysis of biotechnological processes based on the composition of the raw material. eucalyptus, avocado, and plantain cases in a biorefinery system. Chemical Engineering Transactions, 83: 397-402. https://doi.org/10.3303/CET2183067
dc.relationPowell J. (2010). Sustainability Metrics, Indicators, and Indices for the Process Industries. In: Sustainable Development in the Process Industries. Harmsen J., Powell J. (Eds.). John Wiley & Sons: New Jersey, United States. pp. 5-22.
dc.relationPujol F., Bahar S. (1983). Production of single cell protein from green plantain skin. European journal of applied microbiology and biotechnology, 18(6): 361-368. https://doi.org/10.1007/BF00504746
dc.relationRestrepo D., Solarte J., Cardona C. (2022). A biorefinery approach for an integral valorisation of avocado peel and seeds through supercritical fluids. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-022-01829-3
dc.relationRFA. (2022). World fuel ethanol production. Renewable Fuels Association (RFA). Available on: https://n9.cl/uyeab. [Retrieved January 15 2022].
dc.relationRoberts J., Cassula A., Osvaldo P., Dias R., Balestieri J. (2015). Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renewable and Sustainable Energy Reviews, 41: 568-583. https://doi.org/10.1016/j.rser.2014.08.066
dc.relationRueda C., Ortiz M., Cardona C. (2022). Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02501-5
dc.relationSanchez A., Valdez I., Soto A., Sánchez S., Tavarez D. (2017). Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures. Biomass and Bioenergy, 102: 1-12. https://doi.org/10.1016/j.biombioe.2017.03.023
dc.relationSánchez Ó., Ospina D., Montoya S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69: 136-153. http://dx.doi.org/10.1016/j.wasman.2017.08.012
dc.relationShah F., Ranawat B., Mishra S. (2019). An Approach Toward Cellulase Production, Bioconversion, and Utilization. In: Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Hosseini M. (Ed.). Woodhead Publishing: Sawston, United Kingdom. pp. 207-223.
dc.relationSiirola J. (1996). Industrial Applications of Chemical Process Synthesis. In: Advances in Chemical Engineering. Anderson J. (Ed.). Academic Press: Cambridge, United States. pp. 1-62.
dc.relationSSPD. (2021). Disposición final de residuos sólidos. Informe nacional 2020. [Final disposal of solid waste. National report 2020, in Spanish]. Superintendencia de Servicios Públicos Domiciliarios de Colombia (Superservicios). Available on: https://www.superservicios.gov.co/publicaciones. [Retrieved July 18 2022].
dc.relationSuárez D., Marín O., Ortiz J., Puentes A., Ballesteros L., Suárez M. (2018). Biotechnology as a tool for the agroindustrial exploitation of residues of the chain of Musa spp. Chemical Engineering Transactions, 64: 571-576. https://doi.org/10.3303/CET1864096
dc.relationTowler G., Sinnott R. (2022). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design. Third ed. Elsevier: Oxford, United Kingdom. 1027 p.
dc.relationUN. (2018). The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean. United Nations (UN): Santiago, Chile. 94 p. Available on: https://repositorio.cepal.org/handle/11362/40156.
dc.relationUN. (2022). What are the Sustainable Development Goals? United Nations (UN). Available on: https://www.undp.org/sustainable-development-goals. [Retrieved July 30 2022].
dc.relationUNEP. (2021). Worldwide food waste. United Nations Environment Programme (UNEP). Available on: https://n9.cl/12sm8. [Retrieved June 17 2021].
dc.relationVassilev S., Baxter D., Andersen L., Vassileva C. (2010). An overview of the chemical composition of biomass. Fuel, 89(5): 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
dc.relationWang L., Wang J., Littlewood J., Cheng H. (2014). Co-production of biorefinery products from kraft paper sludge and agricultural residues: opportunities and challenges. Green Chemistry, 16(3): 1527-1533. https://doi.org/10.1039/C3GC41984C
dc.relationWBG. (2022a). Solid waste management. The World Bank Group (WBG). Available on: https://n9.cl/qo6n. [Retrieved July 5 2022].
dc.relationWBG. (2022b). Trends in solid waste management. The World Bank Group (WBG). Available on: https://n9.cl/ol1e6. [Retrieved July 11 2022].
dc.relationWEF. (2017). Germany recycles more than any other country. World Economic Forum (WEF). Available on: https://www.weforum.org/agenda/2017/12/germany-recyclesmore-than-any-other-country/. [Retrieved July 2 2022].
dc.relationXue Z., Mu L., Cai M., Zhang Y., Wanapat M., Huang B. (2020). Effect of using banana by–products and other agricultural residues for beef cattle in southern China. Tropical Animal Health and Production, 52: 489-496. https://doi.org/10.1007/s11250-019-02031- 9
dc.relationAbdelaziz O., Gadalla M., El–Halwagi M., Ashour F. (2015). A hierarchical approach for the design improvements of an organocat biorefinery. Bioresource Technology, 181(Supplement C): 321-329. https://doi.org/10.1016/j.biortech.2015.01.068
dc.relationAdeniran H., Abiose S., Ogunsua A. (2010). Production of fungal β-amylase and amyloglucosidase on some Nigerian agricultural residues. Food and Bioprocess Technology, 3(5): 693-698. https://doi.org/10.1007/s11947-008-0141-3
dc.relationAdeniyi A., Abdulkareem S., Ndagi M., Abdulkareem M., Ighalo J. (2022). Effect of fiber content on the physical and mechanical properties of plantain fiber reinforced polystyrene composite. Advances in Materials and Processing Technologies: 1-13. https://doi.org/10.1080/2374068X.2022.2054583
dc.relationAdoki A. (2008). Factors affecting yeast growth and protein yield production from orange, plantain and banana wastes processing residues using Candida sp. African Journal of Biotechnology, 7(3): 290-295.
dc.relationAgama E., Sañudo J., Vélez de la Rocha R., González G., Bello L. (2015). Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA - Journal of Food, 14(1): 117-123. http://dx.doi.org/10.1080/19476337.2015.1055306
dc.relationAgarry S., Owabor C., Ajani A. (2013). Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2,6-dichlorophenol from aqueous solution: adsorption isotherms, kinetic modeling, and thermodynamic studies. Chemical Engineering Communications, 200(8): 1121-1147. https://doi.org/10.1080/00986445.2012.740534
dc.relationAguilar E., González Á. (2021). Evaluación ambiental de la producción de microperlas de quitosano modificadas con TiO2 y magnetita usando el algoritmo de reducción de residuos (WAR). [Environmental assessment for production of modified chitosan microbeads with TiO2 and magnetite using waste reduction algorithm (WAR), in Spanish]. Revista ION, 34(1): 121-136. https://doi.org/10.18273/revion.v34n1-2021010
dc.relationAlonso L., Solarte J., Bello L., Cardona C. (2020). Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food and Bioproducts Processing, 121: 29-42. https://doi.org/10.1016/j.fbp.2020.01.005
dc.relationÁlvarez E., Pantoja A., Gañan L., Ceballos G. (2015). Current status of Moko disease and black sigatoka in Latin America and the Caribbean, and options for managing them. The International Center for Tropical Agriculture (CIAT). The Food and Agricultural Organization (FAO): Cali, Colombia. 50 p. Available on: http://www.fao.org/3/ai3400e.pdf.
dc.relationAmadi P., Ifeanacho M., Agomuo E. (2018). The effects of different heating periods and exclusion of some fermentation conditions on bioethanol production from plantain pseudo-stem waste using the digestive juice of Archachatina marginata, garlic and Saccharomyces cerevisiae. Biofuels, 9(4): 531-539. https://doi.org/10.1080/17597269.2017.1292018
dc.relationAmadi P., Ogunka Nnoka C., Abbey B. (2019). Biotransformation of plantain pseudostem fibres using local enzyme sources; analysis of their potential as commercial poultry feed. Biocatalysis and Biotransformation, 37(3): 224-232. https://doi.org/10.1080/10242422.2018.1532412
dc.relationAndersson K., Brynolf S., Landquist H., Svensson E. (2016). Methods and Tools for Environmental Assessment. In: Shipping and the Environment-Improving Environmental Performance in Marine Transportation. Andersson K., Brynolf S., Landquist H., Svensson E. (Eds.). Springer-Verlag: Berlin, Germany. pp. 265-293.
dc.relationAndiappan V., Ko A., Lau W., Ng L., Ng R., Chemmangattuvalappil N., Ng D. (2014). Synthesis of sustainable integrated biorefinery via reaction pathway synthesis: Economic, incremental enviromental burden and energy assessment with multiobjective optimization. AIChE Journal, 61(1): 132-146. https://doi.org/10.1002/aic.14616
dc.relationAristizábal V., Cardona C., Martín M. (2019). An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Computers & Chemical Engineering, 126: 35-53. https://doi.org/10.1016/j.compchemeng.2019.03.038
dc.relationAristizábal V., Solarte J., Cardona C. (2020). Economic and social assessment of biorefineries: The case of coffee cut–stems (CCS) in Colombia. Bioresource Technology Reports, 9: 100397. https://doi.org/10.1016/j.biteb.2020.100397
dc.relationAwedem F., Happi T., Fokou E., Boda M., Gillet S., Deleu M., Richel A., Gerin P. (2017). Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Conversion and Biorefinery, 7(2): 167-177. https://doi.org/10.1007/s13399-016-0222-x
dc.relationAzapagic A., Perdan S. (2000). Indicators of sustainable development for industry: A general framework. Process Safety and Environmental Protection, 78(4): 243-261. https://doi.org/10.1205/095758200530763
dc.relationBao B., Ng D., Tay D., Jiménez A., El–Halwagi M. (2011). A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries. Computers & Chemical Engineering, 35(8): 1374-1383. https://doi.org/10.1016/j.compchemeng.2011.04.013
dc.relationBatsy D., Solvason C., Sammons N., Chambost V., Bilhartz D., Eden M., El–Halwagi M., Stuart E. (2013). Product Portfolio Selection and Process Design for the Forest Biorefinery. In: Integrated Biorefineries. Desing, Analysis and Optimization. Stuart P., El-Halwagi M. (Eds.). CRC Press: Boca Raton, United States. pp. 3-35.
dc.relationBiegler L., Grossmann I., Westerberg A. (1997). Systematic Methods of Chemical Process Design. Prentice Hall PTR: New Jersey, United States. 796 p. Biegler L. (2010). Nonlinear Programming. Concepts, Algorithms, and Applications to Chemical Processes. Society for Industrial and Applied Mathematics and the Mathematical Optimization Society: Philadelphia, United States. 399 p.
dc.relationBlanco G., Linares B., Hernández J., Maselli A., Rincón A., Ortega R., Medina E., Hernández L., Morillo J. (2013). Caracterización química de lixiviados de pseudotallos y láminas foliares de plátano "Hartón" en el estado Yaracuy. [Chemical characterization of leachates pseudostems and leaf blades of 'Harton' plantain in Yaracuy state, in Spanish]. Agronomía Tropical, 63: 121-134.
dc.relationBot B., Tamba J., Sosso O. (2022). Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02388-2
dc.relationBotero L., Mazzeo M. (2009). Obtención de harina de ráquis del plátano dominico hartón, y evaluación de su calidad con fines de industrialización. [Obtainment of rachis flour from Dominico–Hartón plantain, and its quality evaluation with industrialization purposes, in Spanish]. Vector, 4: 83-94.
dc.relationCadena E., Vélez M., Santa J., Otálvaro V. (2017). Natural fibers from plantain pseudostem (Musa paradisiaca) for use in fiber–reinforced composites. Journal of Natural Fibers, 14(5): 678-690. https://doi.org/10.1080/15440478.2016.1266295
dc.relationCao L., Van DucLong N., Lee M. (2017). Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass. Energy Conversion and Management, 141: 367-377. https://doi.org/10.1016/j.enconman.2016.09.077
dc.relationCardona C., Marulanda V., Young D. (2004). Analysis of the environmental impact of butylacetate process through the WAR algorithm. Chemical Engineering Science, 59(24): 5839-5845. https://doi.org/10.1016/j.ces.2004.06.043
dc.relationCardona C., Sánchez Ó., Montoya M., Quintero J. (2005). Simulación de los procesos de obtención de etanol a partir de caña de azúcar y maíz. [Simulation of the processes to obtain ethanol from sugar cane and corn, in Spanish]. Scientia et Technica, 2(28): 187- 192. http://dx.doi.org/10.22517/23447214.6859
dc.relationCardona C., Sánchez Ó., Gutiérrez L. (2010). Process Synthesis for Fuel Ethanol Production. CRC Press: Boca Raton, United States. 393 p.
dc.relationCayón D., Giraldo G., Arcila M. (2000). Postcosecha y Agroindustria del Plátano en el Eje Cafetero de Colombia. [Post–harvest and Agribusiness of Plantain in the Coffee Region of Colombia, in Spanish]. Corporación Colombiana de Investigación Agropecuaria (Corpoica). Universidad del Quindío: Armenia, Colombia. 265 p.
dc.relationCGIAR. (2008). Biofuels research in the CGIAR – A perspective from the Science Council. Consultative Group on International Agricultural Research (CGIAR): Rome, Italy. 35 p. Available on: https://ispc.cgiar.org/sites/default/files/ISPC_BiofuelsCGIAR.pdf.
dc.relationChalermthai B., Ashraf M., Bastidas J., Olsen B., Schmidt J., Taher H. (2020). Technoeconomic assessment of whey protein-based plastic production from a copolymerization process. Polymers, 12(4). https://doi.org/10.3390/polym12040847
dc.relationChen Q., Grossmann I. (2017). Recent developments and challenges in optimization-based process synthesis. Annual Review of Chemical and Biomolecular Engineering, 8(1): 249-283. https://doi.org/10.1146/annurev-chembioeng-080615-033546
dc.relationCherubini F., Jungmeier G., Wellisch M., Willke T., Skiadas I., Van Ree R., Jong E. (2009). Toward a common classification approach for biorefinery systems. Biofuels Bioproducts and Biorefining, 3(5): 534-546. https://doi.org/10.1002/bbb.172
dc.relationCordero A., Gómez M., Castillo J. (2015). Polyphenolic resin synthesis: Optimizing plantain peel biomass as heavy metal adsorbent. Polímeros, 25: 351-355. http://dx.doi.org/10.1590/0104-1428.1529
dc.relationDaichendt M., Grossmann I. (1998). Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets. Computers & Chemical Engineering, 22(1): 147-175. https://doi.org/10.1016/S0098-1354(97)88451-7
dc.relationDal Pont J. (2012). Process Engineering and Industrial Management. ISTE Ltd and John Wiley & Sons, Inc.: New Jersey, United States. 492 p.
dc.relationDávila J., Hernández V., Castro E., Cardona C. (2014). Economic and environmental assessment of syrup production. Colombian case. Bioresource Technology, 161: 84-90. https://doi.org/10.1016/j.biortech.2014.02.131
dc.relationDávila J., Rosenberg M., Castro E., Cardona C. (2017). A model biorefinery for avocado (Persea americana mill.) processing. Bioresource Technology, 243: 17-29. https://doi.org/10.1016/j.biortech.2017.06.063
dc.relationDaza L., Solarte J., Serna S., Chacon Y., Cardona C. (2016). Agricultural waste management through energy producing biorefineries: The colombian case. Waste and Biomass Valorization, 7(4): 789-798. https://doi.org/10.1007/s12649-016-9576-3
dc.relationde Jong E., Higson A., Walsh P., Wellisch M. (2012). Bio-based chemicals: Value added products from biorefineries. The International Energy Agency (IEA Bioenergy): Wageningen, The Netherlands. 36 p. Available on: https://n9.cl/g4vao.
dc.relationDemirbaş A. (2010). Biorefineries For Biomass Upgrading Facilities. Springer-Verlag: London, United Kingdom. 240 p.
dc.relationDimian A., Bildea C., Kiss A. (2014). Integrated Design and Simulation of Chemical Processes. Elsevier: Amsterdam, The Netherlands. 863 p.
dc.relationDNP. (2019). Objetivos de Desarrollo Sostenible (ODS). [Sustainable Development Goals (SDG), in Spanish]. Departamento Nacional de Planeación (DNP). Available on: https://ods.dnp.gov.co/. [Retrieved March 12 2022].
dc.relationDouglas J. (1985). A hierarchical decision procedure for process synthesis. AIChE Journal, 31(3): 353-362. https://doi.org/10.1002/aic.690310302
dc.relationDuarte A., Sarache W., Costa Y. (2016). Biofuel supply chain design from coffee cut stem under environmental analysis. Energy, 100: 321-331. https://doi.org/10.1016/j.energy.2016.01.076
dc.relationDuque S., Cardona C., Moncada J. (2015). Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy & Fuels, 29(2): 775-783. https://doi.org/10.1021/ef5019274
dc.relationDuran M., Grossmann I. (1986). A mixed-integer nonlinear programming algorithm for process systems synthesis. AIChE Journal, 32(4): 592-606. https://doi.org/10.1002/aic.690320408
dc.relationEl–Halwagi M. (1997). Pollution Prevention through Process Integration. Systematic Design Tools. Academic Press: San Diego, United States. 313 p.
dc.relationEl–Halwagi M. (2006). Process Integration. Elsevier: San Diego, United States. 398 p
dc.relationElahi M., Yusuf A., Torshabi A., Fazaeli H., Dehghani M., Salem A. (2019). Ensiling pretreatment of banana waste by–products: Influences on chemical composition and environmental rumen biogas and fermentation. Waste and Biomass Valorization, 10: 3363-3371. https://doi.org/10.1007/s12649-018-0312-z
dc.relationEPA. (2022). Waste Reduction Algorithm: Chemical Process Simulation for Waste Reduction. Environmental Protection Agency (EPA). Available on: https://n9.cl/1d8la. [Retrieved July 10 2022].
dc.relationErdei B., Barta Z., Sipos B., Réczey K., Galbe M., Zacchi G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels, 3(16): 1-9. https://doi.org/10.1186/1754-6834-3-16
dc.relationEscalante H., Orduz J., Zapata H., Cardona M., Duarte M. (2009). Atlas del potencial energético de la biomasa residual en Colombia. [Atlas of the energy potential of the residual biomass in Colombia, in Spanish]. Bogotá, Colombia. 182 p. Available on: https://bdigital.upme.gov.co/handle/001/1058.
dc.relationEurObserv'ER. (2020). Biofuels barometer 2020. EurObserv'ER: Frankfurt, Germany. 16 p. Available on: https://www.eurobserv-er.org/biofuels-barometer-2020/
dc.relationEysseric E., Ghislain T., Duret X., Lalonde O., Segura P., Lavoie J. (2017). Effect of steam treatments on the availability of various families of secondary metabolites extracted from green sweet sorghum. Industrial Crops and Products, 104: 120-128. https://doi.org/10.1016/j.indcrop.2017.04.040
dc.relationEzekoye V., Peter O., Ofomatah A., Agbogu A., Ezekoye D. (2020). Methane production enhancement and comparative study of biodegradation of some plants and animal wastes. Indian Journal of Biochemistry & Biophysics, 57(4): 449-457. http://op.niscair.res.in/index.php/IJBB/article/view/38745
dc.relationFAO. (2022). FAOSTAT: Food and agriculture data. Food and Agriculture Organization (FAO). Available on: http://www.fao.org/faostat/es/#data. [Retrieved February 28 2022].
dc.relationFerreira R., Azzoni A., Santana M., Petrides D. (2021). Techno–economic analysis of a hyaluronic acid production process utilizing streptococcal fermentation. Processes, 9(2): 1-16. https://doi.org/10.3390/pr9020241
dc.relationGañán P., Zuluaga R., Restrepo A., Labidi J., Mondragon I. (2008). Plantain fibre bundles isolated from Colombian agro–industrial residues. Bioresource Technology, 99(3): 486- 491. https://doi.org/10.1016/j.biortech.2007.01.012
dc.relationGargalo C., Carvalho A., Gernaey K., Sin G. (2016). A framework for techno–economic & environmental sustainability analysis by risk assessment for conceptual process evaluation. Biochemical Engineering Journal, 116(Supplement C): 146-156. https://doi.org/10.1016/j.bej.2016.06.007
dc.relationGavrila I., Iedema P. (1996). Phenomena-driven process design, a knowledge-based approach. Computers & Chemical Engineering, 20: S103-S108. https://doi.org/10.1016/0098-1354(96)00028-2
dc.relationGeraili A., Sharma P., Willis R., Romagnoli J. (2013). A simulation and techno-economic optimization-based methodology to design multi-product lignocellulosic biorefineries. Chemical Engineering Transactions, 32: 1183-1188. https://doi.org/10.3303/CET1332198
dc.relationGibert O., Dufour D., Giraldo A., Sánchez T., Reynes M., Pain J., González A., Fernández A., Díaz A. (2009). Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences. Journal of Agricultural and Food Chemistry, 57(17): 7857-7869. https://doi.org/10.1021/jf901788x
dc.relationGiuliano A., Poletto M., Barletta D. (2016). Process optimization of a multi–product biorefinery: The effect of biomass seasonality. Chemical Engineering Research and Design, 107(Supplement C): 236-252. https://doi.org/10.1016/j.cherd.2015.12.011
dc.relationGranjo J., Duarte B., Oliveira N. (2017). Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment. Energy, 129: 273-291. https://doi.org/10.1016/j.energy.2017.03.167
dc.relationGrossmann I. (1985). Mixed-integer programming approach for the synthesis of integrated process flowsheets. Computers & Chemical Engineering, 9(5): 463-482. https://doi.org/10.1016/0098-1354(85)80023-5
dc.relationGundersen T. (2013). ¿What is process integration? Department of Energy and Process Engineering.Norwegian University of Science and Technology (NTNU): Trondheim, Norway. 30 p. Available on: https://n9.cl/5wj7w.
dc.relationGutiérrez F., Guachamin D., Portilla A. (2017). Valoración nutricional de tres alternativas alimenticias en el crecimiento y engorde de cerdos (Sus scrofa domestica) Nanegal– Pichincha. [Nutrition valuation of three feeding alternatives in the growing and fattening of pigs (Sus scrofa domestica) Nanegal–Pichincha, in Spanish]. Revista de Ciencias de la Vida, La Granja, 26(2): 155-162. http://doi.org/10.17163/lgr.n26.2017.13
dc.relationGutiérrez L., Sánchez Ó., Cardona C. (2009). Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresource Technology, 100(3): 1227-1237. https://doi.org/10.1016/j.biortech.2008.09.001
dc.relationHappi T., Robert C., Ronkart S., Wathelet B., Paquot M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10): 4346-4354. https://doi.org/10.1016/j.biortech.2007.08.030
dc.relationHernández F., Morales Y., Lambis H., Pasqualino J. (2017). Starch extraction potential from plantain peel wastes. Journal of Environmental Chemical Engineering, 5(5): 4980- 4985. https://doi.org/10.1016/j.jece.2017.09.034
dc.relationIEA Bioenergy. (2009). Biorefineries: Adding value to the sustainable utilisation of biomass. The International Energy Agency (IEA Bioenergy): Wageningen, The Netherlands. 16 p. Available on: https://n9.cl/12lxu.
dc.relationIEA Bioenergy. (2022). Global database of biomass conversion facilities. IEA Bioenergy. Available on: https://www.ieabioenergy.com/installations/. [Retrieved July 7 2022]
dc.relationInam E., Etim U., Akpabio E., Umoren S. (2016). Simultaneous adsorption of lead (II) and 3,7-Bis(dimethylamino)-phenothiazin-5-ium chloride from aqueous solution by activated carbon prepared from plantain peels. Desalination and Water Treatment, 57(14): 6540-6553. https://doi.org/10.1080/19443994.2015.1010236
dc.relationIsrael A., Obot I., Umoren S., Mkpenie V., Asuquo J. (2008). Production of cellulosic polymers from agricultural wastes,. E-Journal of Chemistry, 5(1): 81-85. https://doi.org/10.1155/2008/436356
dc.relationJaksland C., Gani R., Lien K. (1995). Separation process design and synthesis based on thermodynamic insights. Chemical Engineering Science, 50(3): 511-530. https://doi.org/10.1016/0009-2509(94)00216-E
dc.relationJong E., van Ree R., van Tuil R., Elbersen W. (2006). Biorefineries for the Chemical Industry. A Dutch Point of View. In: Biorefineries – Industrial Processes and Products. Kamm B., Gruber P., Kamm M. (Eds.). WILEY‐VCH Verlag GmbH: Weinheim, Germany. pp. 85-111.
dc.relationJulio R., Albet J., Vialle C., Vaca C., Sablayrolles C. (2017). Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels, Bioproducts and Biorefining, 11(2): 373-395. https://doi.org/10.1002/bbb.1749
dc.relationKamm B., Kamm M., Gruber P., Kromus S. (2006). Biorefinery Systems. An Overview. In: Biorefineries. Industrial Processes and Products. Kamm B., Gruber P., Kamm M. (Eds.). WILEY-VCH Verlag GmbH: Weinheim, Germany. pp. 3-40.
dc.relationKatongole C., Sabiiti E., Bareeba F., Ledin I. (2011). Utilization of Market Crop Wastes as Animal Feed in Urban and Peri-Urban Livestock Production in Uganda. Journal of Sustainable Agriculture, 35(3): 329-342. https://doi.org/10.1080/10440046.2011.554318
dc.relationKemp I. (2007). Pinch Analysis and Process Integration. User Guide on Process Integration for the Efficient Use of Energy. Elsevier: Oxford. 396 p
dc.relationKemp I. (2007). Pinch Analysis and Process Integration. User Guide on Process Integration for the Efficient Use of Energy. Elsevier: Oxford. 396 p
dc.relationKokossis A., Tsakalova M., Pyrgakis K. (2015). Design of integrated biorefineries. Computers & Chemical Engineering, 81(Supplement C): 40-56. https://doi.org/10.1016/j.compchemeng.2015.05.021
dc.relationLateef A., Oloke J., Gueguim E., Raimi O. (2012). Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media. Acta Alimentaria, 41(1): 100–117. https://doi.org/10.1556/AAlim.41.2012.1.12
dc.relationLennartsson P., Erlandsson P., Taherzadeh M. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology, 165: 3-8. https://doi.org/10.1016/j.biortech.2014.01.127
dc.relationLi X. (2004). Conflict–based Method for Conceptual Process Synthesis. Doctoral Thesis. Lappeenranta University of Technology: Lappeenranta. 104 p.
dc.relationLi X., Kraslawski A. (2004). Conceptual process synthesis: past and current trends. Chemical Engineering and Processing, 43(5): 589-600. https://10.1016/j.cep.2003.05.002
dc.relationManhongo T., Chimphango A., Thornley P., Röder M. (2021). Techno–economic and environmental evaluation of integrated mango waste biorefineries. Journal of Cleaner Production, 325: 129335. https://doi.org/10.1016/j.jclepro.2021.129335
dc.relationMartin M., Gani R., Mujtaba I. (2022). Sustainable process synthesis, design, and analysis: Challenges and opportunities. Sustainable Production and Consumption, 30: 686-705. https://doi.org/10.1016/j.spc.2022.01.002
dc.relationMazari S., Hossain N., Basirun W., Mubarak N., Abro R., Sabzoi N., Shah A. (2021). An overview of catalytic conversion of CO2 into fuels and chemicals using metal organic frameworks. Process Safety and Environmental Protection, 149: 67-92. https://doi.org/10.1016/j.psep.2020.10.025
dc.relationMazzeo M., León L., Mejía L., Guerrero L., Botero J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. [Industrial use of plantain harvest and post–harvest waste in the department of Caldas, in Spanish]. Revista de Educación en Ingeniería, 5(9): 128-139. http://dx.doi.org/10.26507/rei.v5n9.14
dc.relationMazzeo M., Díaz F., Mejía L. (2015). Aprovechamiento de Residuos de Cosecha y Poscosecha del Plátano. [Use of Harvest and Post–harvest Residues of Plantain, in Spanish]. Universidad de Caldas: Manizales, Colombia. 125 p.
dc.relationMeramo S., González Á. (2021). Process synthesis, analysis, and optimization methodologies toward chemical process sustainability. Industrial & Engineering Chemistry Research, 60(11): 4193-4217. https://doi.org/10.1021/acs.iecr.0c05456
dc.relationMiezah K., Obiri K., Kádár Z., Heiske S., Fei B., Mensah M., Meyer A. (2017). Municipal solid waste management in a low income economy through biogas and bioethanol production. Waste and Biomass Valorization, 8(1): 115-127. https://doi.org/10.1007/s12649-016-9566-5
dc.relationMinAgricultura, IICA. (2000). Acuerdo de competitividad de la cadena productiva del plátano en Colombia. [Agreement of competitiveness of the plantain production chain in Colombia, in Spanish]. Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura). Instituto Interamericano de Cooperación para la Agricultura (IICA): Bogotá, Colombia. 76 p. Available on: http://repiica.iica.int/docs/B0119e/B0119e.pdf.
dc.relationMinAgricultura. (2005). La cadena del plátano en Colombia. Una mirada global de su estructura y dinámica 1991–2005. [The plantain chain in Colombia. An overview of its structure and dynamics 1991–2005, in Spanish]. Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura): Bogotá, Colombia. 38 p. Available on: https://n9.cl/a1x5n.
dc.relationMinAgricultura. (2021). Cadena de Plátano. [Plantain Chain, in Spanish]. Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura): Bogotá, Colombia. 22 p. Available on: https://n9.cl/03b15.
dc.relationMohapatra D., Mishra S., Sutar N. (2010). Banana and its by–product utilisation: an overview. Journal of Scientific & Industrial Research, 69: 323-329.
dc.relationMoncada J., El–Halwagi M., Cardona C. (2013a). Techno–economic analysis for a sugarcane biorefinery: Colombian case. Bioresource Technology, 135: 533-543. https://doi.org/10.1016/j.biortech.2012.08.137
dc.relationMoncada J., Matallana L., Cardona C. (2013b). Selection of process pathways for biorefinery design using optimization Tools: A Colombian case for conversion of sugarcane bagasse to ethanol, poly-3-hydroxybutyrate (PHB), and energy. Industrial & Engineering Chemistry Research, 52(11): 4132-4145. https://doi.org/10.1021/ie3019214
dc.relationMoncada J., Aristizábal V., Cardona C. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116(Supplement C): 122-134. https://doi.org/10.1016/j.bej.2016.06.009
dc.relationMoran A. (2015). An Applied Guide to Process and Plant Design. Elsevier: Amsterdam, Netherlands. 378 p.
dc.relationMoreno K., Meramo S., González A. (2020). Environmental sustainability analysis of chitosan microbeads production for pharmaceutical applications via computer-aided simulation, WAR and TRACI assessments. Sustainable Chemistry and Pharmacy, 15: 100212. https://doi.org/10.1016/j.scp.2020.100212
dc.relationNaranjo J., Cardona C., Higuita J. (2014). Use of residual banana for polyhydroxybutyrate (PHB) production: Case of study in an integrated biorefinery. Waste Management, 34(12): 2634-2640. https://doi.org/10.1016/j.wasman.2014.09.007
dc.relationNational Research Council. (1988). Frontiers in Chemical Engineering: Research Needs and Opportunities. Academies Press: Washington, United States. 219 p.
dc.relationNg D. (2010). Automated targeting for the synthesis of an integrated biorefinery. Chemical Engineering Journal, 162(1): 67-74. https://doi.org/10.1016/j.cej.2010.04.061
dc.relationNg D., Pham V., El–Halwagi M., Jiménez A., Dennis H. (2010). A Hierarchical Approach to the Synthesis and Analysis of Integrated Biorefineries. In: Design for Energy and the Environment. El-Halwagi M., Linninger A. (Eds.). Taylor and Francis: Boca Raton, United States. pp. 1101.
dc.relationNishida N., Liu Y., Ichikawa A. (1976). Studies in chemical process desing and synthesis II. Optimal Synthesis of dynamic process systems with uncertainty. AlChE, 22(3): 539- 549. https://doi.org/10.1002/aic.690220318
dc.relationNorton R., Angel M., Argüello R., Balcázar A., Martínez H., Samacá H., Turner A. (2017). The Competitiveness of Tropical Agriculture A Guide to Competitive Potential with Case Studies. Elsevier: London, United Kingdom. 335 p.
dc.relationNREL. (2004). Top Value Added Chemicals From Biomass. National Renewable Energy Laboratory (NREL): Denver, United States. 67 p.
dc.relationOgunjobi J., Lajide L. (2015). The potential of cocoa pods and plantain peels as renewable sources in Nigeria. International Journal of Green Energy, 12(4): 440-445. https://doi.org/10.1080/15435075.2013.848403
dc.relationOloko M., Taiwo A., Ajala S., Solomon B., Betiku E. (2018). Performance evaluation of three different-shaped bio-digesters for biogas production and optimization by artificial neural network integrated with genetic algorithm. Sustainable Energy Technologies and Assessments, 26: 116-124. https://doi.org/10.1016/j.seta.2017.10.006
dc.relationOluyemi E., Oyekunle J., Olasoji S. (2009). A comparative study of the removal of heavy metal ions from synthetic wastewaters using different adsorbents. Adsorption Science & Technology, 27(5): 493-501. https://doi.org/10.1260/0263-6174.27.5.493
dc.relationOrtiz M., Solarte J., Cardona C. (2021). A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresource Technology, 325: 124682. https://doi.org/10.1016/j.biortech.2021.124682
dc.relationPadam B., Tin H., Chye F., Abdullah M. (2014). Banana by-products: an under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51(12): 3527-3545. https://10.1007/s13197-012-0861-2
dc.relationPang Y., Foo D., Yan Y., Sharmin N., Lester E., Wu T., Pang C. (2021). Analysis of environmental impacts and energy derivation potential of biomass pyrolysis via Piper diagram. Journal of Analytical and Applied Pyrolysis, 154: 104995. https://doi.org/10.1016/j.jaap.2020.104995
dc.relationParra D., Solarte J., Cardona C. (2020). Techno-economic and environmental analysis of biogas production from plantain pseudostem waste in Colombia. Waste and Biomass Valorization, 11(7): 3161-3171. https://doi.org/10.1007/s12649-019-00643-8
dc.relationPathak P., Mandavgane S., Kulkarni B. (2016). Valorization of banana peel: A biorefinery approach. Reviews in Chemical Engineering, 32(6): 651-666. https://doi.org/10.1515/revce-2015-0063
dc.relationPérez J., Muñoz L. (2014). What can't be ignored in service quality evaluation: Application contexts, tools and factors. Revista Facultad de Ingeniería Universidad de Antioquia, 72: 145-160.
dc.relationPerez L., Schreiber A., Schütt F., Saake B., Kirsch C., Smirnova I. (2013). Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect on cellulose, hemicellulose and lignin recovery. Bioresource Technology, 142: 428-435. https://doi.org/10.1016/j.biortech.2013.05.054
dc.relationPerkins J. (2002). Education in process systems engineering: past, present and future. Computers and Chemical Engineering, 26(2): 283-293. https://doi.org/10.1016/S0098- 1354(01)00746-3
dc.relationPetrides D., Carmichael D., Siletti C., Koulouris A. (2019). Bioprocess Simulation and Economics. In: Essentials in Fermentation Technology. Berenjian A. (Ed.). Springer Nature: Basel, Switzerland. pp. 273-305.
dc.relationPiedrahita S., Solarte J., Piñeres P., Ortiz M., Pérez A., Cardona C. (2022). Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: plantain and avocado integration in the Montes de María region. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02560-8
dc.relationPosada J., Rincón L., Cardona C. (2012). Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresource Technology, 111: 282-293. https://doi.org/10.1016/j.biortech.2012.01.151
dc.relationPoveda J., Piedrahita S., Cardona C. (2021). Life cycle analysis of biotechnological processes based on the composition of the raw material. eucalyptus, avocado, and plantain cases in a biorefinery system. Chemical Engineering Transactions, 83: 397-402. https://doi.org/10.3303/CET2183067
dc.relationPuigjaner L., Ollero P., De Prada C., Jiménez L. (2006). Estrategias de Modelado, Simulación y Optimización de Procesos Químicos. [Strategies for Modeling, Simulation and Optimization of Chemical Processes, in Spanish]. Síntesis: Madrid, Spain. 383 p.
dc.relationPujol F., Bahar S. (1983). Production of single cell protein from green plantain skin. European journal of applied microbiology and biotechnology, 18(6): 361-368. https://doi.org/10.1007/BF00504746
dc.relationQuintero J., Montoya M., Sánchez Ó., Giraldo O., Cardona C. (2008). Fuel ethanol production from sugarcane and corn: Comparative analysis for a colombian case. Energy, 33(3): 385-399. https://doi.org/10.1016/j.energy.2007.10.001
dc.relationQuintero J., Cardona C., Felix E., Moncada J., Sánchez Ó., Gutiérrez L. (2012). Techno– economic analysis of bioethanol production in Africa: Tanzania case. Energy, 48(1): 442-454. https://doi.org/10.1016/j.energy.2012.10.018
dc.relationRestrepo D., Solarte J., Cardona C. (2022). A biorefinery approach for an integral valorisation of avocado peel and seeds through supercritical fluids. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-022-01829-3
dc.relationRincón L., Moncada J., Cardona C. (2014). Analysis of potential technological schemes for the development of oil palm industry in Colombia: A biorefinery point of view. Industrial Crops and Products, 52: 457-465. https://doi.org/10.1016/j.indcrop.2013.11.004
dc.relationRossetti I., Compagnoni M., Finocchio E., Ramis G., Di Michele A., Millot Y., Dzwigaj S. (2017). Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery. Applied Catalysis B: Environmental, 210. https://doi.org/10.1016/j.apcatb.2017.04.007
dc.relationRueda C., Ortiz M., Cardona C. (2022). Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02501-5
dc.relationRuiz G., Smith R., Gonzalez M. (2012). Sustainability indicators for chemical processes: I. Taxonomy. Industrial & Engineering Chemistry Research, 51(5): 2309-2328. https://doi.org/10.1021/ie102116e
dc.relationSacramento J. (2012). A methodology for evaluating the sustainability of biorefineries: framework and indicators. Biofuels, Bioproducts and Biorefining, 6(1): 32-44. http://dx.doi.org/10.1002/bbb.335
dc.relationSacramento J., Navarro F., Vilchiz L. (2016). Evaluating the sustainability of biorefineries at the conceptual design stage. Chemical Engineering Research and Design, 107(Supplement C): 167-180. https://doi.org/10.1016/j.cherd.2015.10.017
dc.relationSammons N., Yuan W., Eden M., Aksoy B., Cullinan H. (2008). Optimal biorefinery product allocation by combining process and economic modeling. Chemical Engineering Research and Design, 86(7): 800-808. https://doi.org/10.1016/j.cherd.2008.03.004
dc.relationSanchez A., Valdez I., Soto A., Sánchez S., Tavarez D. (2017). Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures. Biomass and Bioenergy, 102: 1-12. https://doi.org/10.1016/j.biombioe.2017.03.023
dc.relationSánchez Ó., Cardona C. (2007). Producción de Alcohol Carburante. Una Alternativa para el Desarrollo Agroindustrial. [Production of Fuel Alcohol. An Alternative for Agroindustrial Development, in Spanish]. Gobernación de Caldas. Secretaría de Educación. Programa de las Naciones Unidadas para el Desarrollo (PNUD). Universidad Nacional de Colombia: Manizales, Colombia. 380 p.
dc.relationSánchez Ó. (2008). Síntesis de Esquemas Tecnológicos Integrados para la Producción Biotecnológica de Alcohol Carburante a partir de Tres Materias Primas Colombianas. [Synthesis of Integrated Technological Schemes for the Biotechnological Production of Fuel Alcohol from Three Colombian Raw Materials, in Spanish]. Doctoral Thesis. Departamento de Ingeniería Química, Universidad Nacional de Colombia: Manizales, Caldas. 248 p.
dc.relationSánchez Ó., Cardona C. (2012). Conceptual design of cost–effective and environmentally– friendly configurations for fuel ethanol production from sugarcane by knowledge–based process synthesis. Bioresource Technology, 104: 305-314. https://doi.org/10.1016/j.biortech.2011.08.125
dc.relationSanz A., Susmozas A., Peters J., Dufour J. (2017). Biorefinery Modeling and Optimization. In: Biorefineries. Targeting Energy, High Value Products and Waste Valorisation. Rabaçal M., Ferreira A., Silva C., Costa M. (Eds.). Springer International Publishing Cham, Switzerland. pp. 227-278.
dc.relationSeider W., Seader J., Lewin D., Widagdo S. (2010). Product and Process Desing Principles. Synthesis, Analysis, and Evaluation. Third ed. John Wiley and Sons: New Delhi, India. 728 p.
dc.relationSikdar S. (2003a). Journey towards sustainable development: A role for chemical engineers. Environmental Progress, 22(4): 227-232. https://doi.org/10.1002/ep.670220409
dc.relationSikdar S. (2003b). Sustainable development and sustainability metrics. AIChE Journal, 49(8): 1928-1932. https://doi.org/10.1002/aic.690490802
dc.relationSmith R. (2005). Chemical Process Design and Integration. John Wiley & Sons: West Sussex, United Kingdom. 687 p.
dc.relationStuart P., El–Halwagi M. (2013). Integrated Biorefineries. Desing, Analysis and Optimization. CRC Press: Boca Raton, United States. 851 p.
dc.relationSuárez D., Marín O., Ortiz J., Puentes A., Ballesteros L., Suárez M. (2018). Biotechnology as a tool for the agroindustrial exploitation of residues of the chain of Musa spp. Chemical Engineering Transactions, 64: 571-576. https://doi.org/10.3303/CET1864096
dc.relationTang M., Chin M., Lim K., Mun Y., Ng R., Tay D., Ng D. (2013). Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technologies and Environmental Policy, 15(5): 783-799. https://doi.org/10.1007/s10098-013-0582-x
dc.relationTay D., Ng D., Kheireddine H., El–Halwagi M. (2011). Synthesis of an integrated biorefinery via the C–H–O ternary diagram. Clean Technologies and Environmental Policy, 13: 567-579. https://doi.org/10.1007/s10098-011-0354-4
dc.relationTay D., Ng D. (2013). Automated Targeting for the Synthesis of an Integrated Biorefinery. In: Integrated Biorefineries. Desing, Analysis and Optimization. Stuart P., El–Halwagi M. (Eds.). CRC Press: Boca Raton, United States. pp. 3-35
dc.relationTowler G., Sinnott R. (2022). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design. Third ed. Elsevier: Oxford, United Kingdom. 1027 p.
dc.relationUN. (2022). What are the Sustainable Development Goals? United Nations (UN). Available on: https://www.undp.org/sustainable-development-goals. [Retrieved July 30 2022].
dc.relationVan Ree R., Annevelink B. (2007). Status report Biorefinery 2007. 847. Agrotechnology and Food Sciences Group: Wageningen, The Netherlands. 110 p. Available on: http://edepot.wur.nl/42141.
dc.relationWang L., Wang J., Littlewood J., Cheng H. (2014). Co-production of biorefinery products from kraft paper sludge and agricultural residues: opportunities and challenges. Green Chemistry, 16(3): 1527-1533. https://doi.org/10.1039/C3GC41984C
dc.relationWesterberg A., Stephanopoulos G. (1975). Studies in process synthesis I: Branch and bound strategy with list techniques for the synthesis of separation schemes. Chemical Engineering Science, 30(8): 963-972. https://doi.org/10.1016/0009-2509(75)80063-7
dc.relationWesterberg A. (2004). A retrospective on design and process synthesis. Computers & Chemical Engineering, 28(4): 447-458. https://doi.org/10.1016/j.compchemeng.2003.09.029
dc.relationXue Z., Mu L., Cai M., Zhang Y., Wanapat M., Huang B. (2020). Effect of using banana by–products and other agricultural residues for beef cattle in southern China. Tropical Animal Health and Production, 52: 489-496. https://doi.org/10.1007/s11250-019-02031- 9
dc.relationXue Z., Mu L., Cai M., Zhang Y., Wanapat M., Huang B. (2020). Effect of using banana by–products and other agricultural residues for beef cattle in southern China. Tropical Animal Health and Production, 52: 489-496. https://doi.org/10.1007/s11250-019-02031- 9
dc.relationYoung D., Cabezas H. (1999). Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. Computers and Chemical Engineering, 23(10): 1477-1491. http://dx.doi.org/10.1016/S0098-1354(99)00306-3
dc.relationYoung D., Scharp R., Cabezas H. (2000). The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Management, 20: 605-6015. https://doi.org/10.1016/S0956-053X(00)00047-7
dc.relationYuan Z., Chen B., Gani R. (2013). Applications of process synthesis: Moving from conventional chemical processes towards biorefinery processes. Computers & Chemical Engineering, 49: 217-229. https://doi.org/10.1016/j.compchemeng.2012.09.020
dc.relationZhang L., Babi D., Gani R. (2016). New vistas in chemical product and process design. Annual Review of Chemical and Biomolecular Engineering, 7(1): 557-582. https://doi.org/10.1146/annurev-chembioeng-080615-034439
dc.relationZhang X., Zhang G., Song C., Guo X. (2021). Catalytic conversion of carbon dioxide to methanol: Current status and future perspective. Frontiers in Energy Research, 8. https://doi.org/10.3389/fenrg.2020.621119
dc.relationAden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., & Wallace, B. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co–current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover (NREL/TP-510-32438). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy02osti/32438.pdf
dc.relationAguas de Manizales. (2020). Tarifa de agua (Water fee, in Spanish). Aguas de Manizales. Retrieved August 25, 2020, from https://www.aguasdemanizales.com.co/
dc.relationAlibaba. (2020). Products and Suppliers. Alibaba. Retrieved March 28 2020, from https://www.alibaba.com/
dc.relationAristizábal, V., Solarte, J., & Cardona, C. (2020). Economic and social assessment of biorefineries: The case of coffee cut–stems (CCS) in Colombia. Bioresource Technology Reports, 9, 100397. https://doi.org/10.1016/j.biteb.2020.100397
dc.relationAspentech (2011). Aspen Icarus Reference Guide. Icarus Evaluation Engine (IEE V7.3.1). Aspen Technology, Inc
dc.relationBanRep. (2020). Tasa de cambio y captación (Exchange and collection rate, in Spanish). Banco de la República de Colombia (BanRep). Retrieved April 20 2020, from https://www.banrep.gov.co/es
dc.relationCardona, C., Sánchez, Ó., & Gutiérrez, L. (2010). Process Synthesis for Fuel Ethanol Production. Boca Raton, United States: CRC Press.
dc.relationCHEC. (2020). Tarifa de energia (Energy fee, in Spanish). Central Hidroeléctrica de Caldas (CHEC). Retrieved August 14, 2020, from https://www.chec.com.co/
dc.relationChembid. (2020). Products and suppliers. Chembid GmbH. Retrieved July 20, 2020, from https://www.chembid.com/en/
dc.relationChiba, S., Chiba, H., & Yagui, M. (2005). A guide for silage making and utilization in the tropical regions. http://jlta.lin.gr.jp/report/detail_oversea_pdf/kaigai_m039.pdf
dc.relationCongreso de la República. (2018). Ley No. 1943. 107 p.
dc.relationDANE. (2020). Índice de Precios al Consumidor (IPC) (Consumer price index, in Spanish). Departamento Administrativo Nacional de Estadística de Colombia (DANE). Retrieved January 23 2020, from http://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-alconsumidor-ipc
dc.relationEfigas. (2020). Tarifa del gas natural (Natural gas fees, in Spanish). Efigas. Retrieved August 15, 2020, from https://www.efigas.com.co/Nuestros-usuarios/Tarifas
dc.relationFEDNA (2009). Necesidades nutricionales para rumiantes de leche (Nutritional requirements for milk ruminants, in Spanish). Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). http://www.fundacionfedna.org/node/75
dc.relationFEDNA. (2020). Ensilado de maíz (Corn silage, in Spanish). Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Retrieved July 18 2020, from http://www.fundacionfedna.org/forrajes/ensilado-de-ma%C3%ADz
dc.relationMakkar, H., Sánchez, M., & Speedy, A. (2007). Feed supplementation blocks. Urea–molasses multinutrient blocks: simple and effective feed supplement technology for ruminant agriculture. http://www.fao.org/3/a-a0242e.pdf
dc.relationNational Academy of Sciences. (2001). Nutrient Requirements of Dairy Cattle, Vol. 7. Washington, United States: The National Academy of Sciences.
dc.relationPeters, M., & Timmerhaus, K. (2003). Plant Desing and Economics for Chemical Engineers. New York, United States: McGraw–Hill.
dc.relationVirtualExpo. (2020). Direct Industry. VirtualExpo. Retrieved March 28, 2020, from https://www.directindustry.fr/
dc.relationFAO (2022) FAOSTAT: Food and agriculture data. Food and Agriculture Organization (FAO). http://www.fao.org/faostat/es/#data. Accessed February 28 2022.
dc.relationGómez J, Sánchez Ó (2019) Producción de galactooligosacáridos: alternativa para el aprovechamiento del lactosuero. Una revisión (Production of galactooligosaccharides: Alternative for whey utilization. A review, in Spanish). Ing. Desarro. 37(1): 129-158. http://dx.doi.org/10.14482/inde.37.1.637
dc.relationGibert O, Dufour D, Giraldo A, Sánchez T, Reynes M, Pain J, González A, Fernández A, Díaz A (2009) Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences. J. Agric. Food Chem. 57(17): 7857-7869. https://doi.org/10.1021/jf901788x
dc.relationEscalante H, Orduz J, Zapata H, Cardona M, Duarte M (2009) Atlas del potencial energético de la biomasa residual en Colombia (Atlas of the energy potential of the residual biomass in Colombia, in Spanish). Unidad de Planeación Minero Energética; IDEAM; Colciencias; Universidad Industrial de Santander. https://bdigital.upme.gov.co/handle/001/1058
dc.relationGómez J, Sánchez Ó, Matallana L (2021) Procesos de transformación: perspectiva de aprovechamiento para los residuos de la agroindustria del plátano (Processes of transformation: perspective of use for the residues of the plantain agro-industry, in Spanish). Rev. P+L. 16(1): 6-30. https://doi.org/10.22507/pml.v16n1a1
dc.relationMohapatra D, Mishra S, Sutar N (2010) Banana and its by–product utilisation: an overview. J Sci Ind Res 69: 323-329.
dc.relationGómez J, Nobre C, Teixeira J, Sánchez Ó (2022) Towards a biorefinery processing waste from plantain agro–industry: assessment of the production of dairy cattle feed through process simulation. Biosys. Eng. 217: 131-149. https://doi.org/10.1016/j.biosystemseng.2022.03.008
dc.relationBotero L, Mazzeo M (2009) Obtención de harina de ráquis del plátano dominico hartón, y evaluación de su calidad con fines de industrialización (Obtainment of rachis flour from Dominico–Hartón plantain, and its quality evaluation with industrialization purposes, in Spanish). Vector 4: 83-94.
dc.relationGómez J, Pino E, Abrunhosa L, Matallana L, Sánchez Ó, Teixeira J, Nobre C (2021) Valorisation of rejected unripe plantain fruits of Musa AAB Simmonds: from nutritional characterisation to the conceptual process design for prebiotic production. Food Funct. 12: 3009-3021. http://dx.doi.org/10.1039/D0FO03379K
dc.relationAgama E, Sañudo J, Vélez de la Rocha R, González G, Bello L (2015) Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA J. Food 14(1): 117- 123. http://dx.doi.org/10.1080/19476337.2015.1055306
dc.relationde Jong E, Higson A, Walsh P, Wellisch M (2012) Bio-based chemicals: Value added products from biorefineries. https://n9.cl/g4vao
dc.relationPerez L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I (2013) Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect on cellulose, hemicellulose and lignin recovery. Bioresour. Technol. 142: 428-435. https://doi.org/10.1016/j.biortech.2013.05.054
dc.relationWang L, Wang J, Littlewood J, Cheng H (2014) Co-production of biorefinery products from kraft paper sludge and agricultural residues: opportunities and challenges. Green Chem. 16(3): 1527-1533. https://doi.org/10.1039/C3GC41984C
dc.relationGiuliano A, Poletto M, Barletta D (2016) Process optimization of a multi–product biorefinery: The effect of biomass seasonality. Chem. Eng. Res. Des. 107(Supplement C): 236-252. https://doi.org/10.1016/j.cherd.2015.12.011
dc.relationSanchez A, Valdez I, Soto A, Sánchez S, Tavarez D (2017) Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures. Biomass Bioenergy 102: 1-12. https://doi.org/10.1016/j.biombioe.2017.03.023
dc.relationErdei B, Barta Z, Sipos B, Réczey K, Galbe M, Zacchi G (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol. Biofuels. 3(16): 1-9. https://doi.org/10.1186/1754-6834-3-16
dc.relationLennartsson P, Erlandsson P, Taherzadeh M (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol. 165: 3-8. https://doi.org/10.1016/j.biortech.2014.01.127
dc.relationEysseric E, Ghislain T, Duret X, Lalonde O, Segura P, Lavoie J (2017) Effect of steam treatments on the availability of various families of secondary metabolites extracted from green sweet sorghum. Ind. Crops Prod. 104: 120-128. https://doi.org/10.1016/j.indcrop.2017.04.040
dc.relationDaza L, Solarte J, Serna S, Chacon Y, Cardona C (2016) Agricultural waste management through energy producing biorefineries: The colombian case. Waste Biomass Valorization 7(4): 789-798. https://doi.org/10.1007/s12649-016-9576-3
dc.relationDávila J, Hernández V, Castro E, Cardona C (2014) Economic and environmental assessment of syrup production. Colombian case. Bioresour. Technol. 161: 84-90. https://doi.org/10.1016/j.biortech.2014.02.131
dc.relationDuque S, Cardona C, Moncada J (2015) Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuels 29(2): 775-783. https://doi.org/10.1021/ef5019274
dc.relationAyodeji S (2016) Conceptual design of a process plant for the production of plantain flour. Cogent Eng. 3(1) https://doi.org/10.1080/23311916.2016.1191743
dc.relationPoveda J, Piedrahita S, Cardona C (2021) Life cycle analysis of biotechnological processes based on the composition of the raw material. eucalyptus, avocado, and plantain cases in a biorefinery system. Chem. Eng. Trans. 83: 397-402. https://doi.org/10.3303/CET2183067
dc.relationParra D, Solarte J, Cardona C (2020) Techno-economic and environmental analysis of biogas production from plantain pseudostem waste in Colombia. Waste Biomass Valorization 11(7): 3161-3171. https://doi.org/10.1007/s12649-019-00643-8
dc.relationAlonso L, Solarte J, Bello L, Cardona C (2020) Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod. Process. 121: 29-42. https://doi.org/10.1016/j.fbp.2020.01.005
dc.relationGómez J, Berni P, Matallana L, Sánchez Ó, Teixeira J, Nobre C (2022) Towards a biorefinery processing waste from plantain agro–industry: process development for the production of an isomalto– oligosaccharide syrup from rejected unripe plantain fruits. Food Bioprod. Process. 133: 100-118. https://doi.org/10.1016/j.fbp.2022.03.005
dc.relationGómez J, Matallana L, Sánchez Ó (2022) Towards a biorefinery processing waste from plantain agro– industry: Process design and techno-economic assessment of single-cell protein, natural fibers, and biomethane production through process simulation. Fermentation 8(11): 1-28. https://doi.org/10.3390/fermentation8110582
dc.relationGómez J, Sánchez Ó, Matallana L (2019) Residuos urbanos, agrícolas y pecuarios en el contexto de las biorrefinerías (Urban, agricultural and livestock waste in the context of biorefineries, in Spanish). Rev. Fac. Ing. 28(53): 7-32. https://doi.org/10.19053/01211129.v28.n53.2019.9705
dc.relationPark S, Xu S, Rogers W, Pasman H, El-Halwagi M (2020) Incorporating inherent safety during the conceptual process design stage: A literature review. J. Loss Prev. Process Indust. 63: 104040. https://doi.org/10.1016/j.jlp.2019.104040
dc.relationSiirola J (1996) Industrial Applications of Chemical Process Synthesis. In: Anderson J (ed.) Advances in Chemical Engineering, vol. 23. Academic Press, Cambridge, United States, pp. 1-62.
dc.relationTowler G, Sinnott R (2022) Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design. Third ed. Elsevier, Oxford, United Kingdom.
dc.relationMoran A (2015) An Applied Guide to Process and Plant Design. Elsevier, Amsterdam, Netherlands.
dc.relationConteratto C, Artuzo F, Benedetti Santos O, Talamini E (2021) Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy. Renew. Sust. Energ. Rev. 151: 111527. https://doi.org/10.1016/j.rser.2021.111527
dc.relationMorseletto P (2020) Targets for a circular economy. Resour. Conserv. Recycl. 153: 104553. https://doi.org/10.1016/j.resconrec.2019.104553
dc.relationLi X, Kraslawski A (2004) Conceptual process synthesis: past and current trends. Chem Eng Process. 43(5): 589-600. https://10.1016/j.cep.2003.05.002
dc.relationDouglas J (1988) Conceptual Desing of Chemical Processes. McGraw–Hill, New York, United States
dc.relationSmith R (2005) Chemical Process Design and Integration. John Wiley & Sons, West Sussex, United Kingdom.
dc.relationGómez J, Sánchez Ó, Correa L (2020) Techno–economic and environmental evaluation of cheesemaking waste valorization through process simulation using SuperPro Designer. Waste Biomass Valorization 11(11): 6025-6045. https://doi.org/10.1007/s12649-019-00833-4
dc.relationCoral D, Correa L, Sánchez Ó, Gómez J (2022) Process design and techno-economic assessment of cellulolytic enzymes production from coffee husk through process simulation. Biomass Convers. Biorefin. 1: 1-21. https://doi.org/10.1007/s13399-022-03130-8
dc.relationDuarte A, Sarache W, Costa Y (2016) Biofuel supply chain design from coffee cut stem under environmental analysis. Energy 100: 321-331. https://doi.org/10.1016/j.energy.2016.01.076
dc.relationClauser N, Felissia F, Area M, Vallejos M (2021) A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew. Sust. Energ. Rev. 139: 110687. https://doi.org/10.1016/j.rser.2020.110687
dc.relationMoncada J, Aristizábal V, Cardona C (2016) Design strategies for sustainable biorefineries. Biochem. Eng. J. 116(Supplement C): 122-134. https://doi.org/10.1016/j.bej.2016.06.009
dc.relationGómez J, Sánchez Ó, Benavides X (2017) Análisis de patentes como aproximación al diseño conceptual del proceso de obtención de jarabe de lactosuero (Patent analysis as an approach to the conceptual design of the process for whey syrup production, in Spanish). Rev.Investig.Desarro.Innov. 7(2): 331- 353. https://doi.org/10.19053/20278306.v7.n2.2017.5453
dc.relationBriskin D (2001) Production of Phytomedicinal Chemicals by Plants. In: Pessarakli M (ed.) Handbook of Plant and Crop Physiology. Marcel Dekker, Inc., New York, United States, pp. 485-500.
dc.relationKatzen R, Schell D (2006) Lignocellulosic Feedstock Biorefinery: History and Plant Development for Biomass Hydrolysis. In: Kamm B, Gruber P, Kamm M (eds.) Biorefineries – Industrial Processes and Products, vol. 1. WILEY‐ VCH Verlag GmbH, Weinheim, Germany, pp. 129-138.
dc.relationvan der Maarel M, van der Veen B, Uitdehaag J, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94(2): 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
dc.relationBernier D, Rincón J, Solanilla J, Muñoz J, Váquiro H (2018) Comparison of two pretreatments methods to produce second‒generation bioethanol resulting from sugarcane bagasse. Ind. Crops Prod. 122: 414-421. https://doi.org/10.1016/j.indcrop.2018.06.012
dc.relationChockchaisawasdee S, Stathopoulos C (2022) Functional oligosaccharides derived from fruit-andvegetable by-products and wastes. Horticulturae 8(10): 911. https://doi.org/10.3390/horticulturae8100911
dc.relationAlnoch R, Alves G, Salgado J, de Andrades D, Freitas E, Nogueira K, Vici A, Oliveira D, Carvalho-Jr V, Silva R, Buckeridge M, Michelin M, Teixeira J, Polizeli M (2022) Immobilization and application of the recombinant xylanase GH10 of Malbranchea pulchella in the production of xylooligosaccharides from hydrothermal liquor of the Eucalyptus (Eucalyptus grandis) wood chips. Int. J. Mol. Sci. 23(21): 13329. https://doi.org/10.3390/ijms232113329
dc.relationUN (2018) The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean. United Nations (UN). https://repositorio.cepal.org/handle/11362/40156
dc.relationISO (2014). ISO 10628-1:2014 Diagrams for the chemical and petrochemical industry- Part 1: Specification of diagrams. International Organization for Standardization (ISO). 16 p.
dc.relationOrtiz M, Solarte J, Cardona C (2021) A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour. Technol. 325: 124682. https://doi.org/10.1016/j.biortech.2021.124682
dc.relationSánchez Ó (2008) Síntesis de Esquemas Tecnológicos Integrados para la Producción Biotecnológica de Alcohol Carburante a partir de Tres Materias Primas Colombianas. Doctoral Thesis, Universidad Nacional de Colombia.
dc.relationSánchez Ó, Cardona C (2012) Conceptual design of cost–effective and environmentally–friendly configurations for fuel ethanol production from sugarcane by knowledge–based process synthesis. Bioresour. Technol. 104: 305-314. https://doi.org/10.1016/j.biortech.2011.08.125
dc.relationDouglas J (1985) A hierarchical decision procedure for process synthesis. AIChE J. 31(3): 353-362. https://doi.org/10.1002/aic.690310302
dc.relationHamer G (1982) Recycle in fermentation processes. Biotechnol. Bioeng. 24(3): 511-531. https://doi.org/10.1002/bit.260240302
dc.relationEl–Halwagi M (1997) Pollution Prevention through Process Integration. Systematic Design Tools. Academic Press, San Diego, United States.
dc.relationSeider W, Seader J, Lewin D, Widagdo S (2010) Product and Process Desing Principles. Synthesis, Analysis, and Evaluation. Third ed. John Wiley and Sons, New Delhi, India
dc.relationGray N (2010) Nature of Wastewater. In: Gray N (ed.) Water Technology. Butterworth–Heinemann, Oxford, pp. 403-424.
dc.relationPetrides D, Carmichael D, Siletti C, Vardalis D, Koulouris A, Lagonikos P (2019) The Role of Simulation and Scheduling Tools in the Development and Manufacturing of Active Pharmaceutical Ingredients. In: am Ende D, am Ende M (eds.) Chemical Engineering in the Pharmaceutical Industry. John Wiley & Sons, New Jersey, United States, pp. 1037-1066.
dc.relationEl–Halwagi M (2012) Sustainable Design Through Process Integration. Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement. Elsevier, Oxford.
dc.relationSikdar S (2003) Journey towards sustainable development: A role for chemical engineers. Environ. Prog. 22(4): 227-232. https://doi.org/10.1002/ep.670220409
dc.relationPuigjaner L, Ollero P, De Prada C, Jiménez L (2006) Estrategias de Modelado, Simulación y Optimización de Procesos Químicos (Strategies for Modeling, Simulation and Optimization of Chemical Processes, in Spanish). Síntesis, Madrid, Spain
dc.relationSmith R, Ruiz G, Gonzalez M (2015) Using GREENSCOPE indicators for sustainable computer-aided process evaluation and design. Comput. Chem. Eng. 81: 272-277. https://doi.org/10.1016/j.compchemeng.2015.04.020
dc.relationRuiz G, Smith R, Gonzalez M (2012) Sustainability indicators for chemical processes: I. Taxonomy. Ind. Eng. Chem. Res. 51(5): 2309-2328. https://doi.org/10.1021/ie102116e
dc.relationYoung D, Scharp R, Cabezas H (2000) The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Manage. 20: 605-6015. https://doi.org/10.1016/S0956-053X(00)00047-7
dc.relationYoung D, Cabezas H (1999) Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. Comput. Chem. Eng. 23(10): 1477-1491. http://dx.doi.org/10.1016/S0098-1354(99)00306-3
dc.relationSacramento J, Navarro F, Vilchiz L (2016) Evaluating the sustainability of biorefineries at the conceptual design stage. Chem. Eng. Res. Des. 107(Supplement C): 167-180. https://doi.org/10.1016/j.cherd.2015.10.017
dc.relationAristizábal V, Solarte J, Cardona C (2020) Economic and social assessment of biorefineries: The case of coffee cut–stems (CCS) in Colombia. Bioresour. Technol. Rep. 9: 100397. https://doi.org/10.1016/j.biteb.2020.100397
dc.relationLabuschagne C, Brent A, van Erck R (2005) Assessing the sustainability performances of industries. J. Clean. Prod. 13(4): 373-385. https://doi.org/10.1016/j.jclepro.2003.10.007
dc.relationUlrich G (1984) A Guide to Chemical Engineering Process Design and Economics. vol. 30. vol. 6. John Wiley & Sons, Toronto, Canada.
dc.relationPeters M, Timmerhaus K (2003) Plant Desing and Economics for Chemical Engineers. Fifth ed. McGraw–Hill, New York, United States
dc.relationChen H, Wen Y, Waters M, Shonnard D (2002) Design guidance for chemical processes using environmental and economic assessments. Ind. Eng. Chem. Res. 41(18): 4503-4513. https://doi.org/10.1021/ie010835y
dc.relationMinAgricultura (2020) Cadena de Plátano (Plantain Chain, in Spanish). Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura). https://n9.cl/rpztn
dc.relationMinAgricultura (2018) Área, Producción y Rendimiento por Cultivo (Area, production, and national yield by crop, in Spanish). Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura). https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Accessed April 10 2018
dc.relationProMusa (2022) Morfología de la planta del banano (Morphology of the banana plant, in Spanish). Bioversity International–The International Center for Tropical Agriculture (CIAT). http://www.promusa.org/tiindex.php?page=Morfolog%C3%ADa%20de%20la%20planta%20del%20banano&no_bl=y. Accessed June 5, 2022.ki-
dc.relationCadena E, Vélez M, Santa J, Otálvaro V (2017) Natural fibers from plantain pseudostem (Musa paradisiaca) for use in fiber–reinforced composites. J. Nat. Fibers 14(5): 678-690. https://doi.org/10.1080/15440478.2016.1266295
dc.relationGañán P, Zuluaga R, Restrepo A, Labidi J, Mondragon I (2008) Plantain fibre bundles isolated from Colombian agro–industrial residues. Bioresour. Technol. 99(3): 486-491. https://doi.org/10.1016/j.biortech.2007.01.012
dc.relationBalakrishnan S, Wickramasinghe G, Wijayapala U (2019) Investigation on improving banana fiber fineness for textile application. Text. Res. J. 89(21-22): 4398-4409. https://doi.org/10.1177/0040517519835758
dc.relationAdeniyi A, Ighalo J, Onifade D (2019) Banana and plantain fiber–reinforced polymer composites. J. Polym. Eng. 39(7): 597. https://doi.org/10.1515/polyeng-2019-0085
dc.relationHossain M, Begum H (2017) Investigation of spinnability of banana fibers through yarn formation along with analysis of yarn properties. Am. J. Eng. Res. 6(1): 322-327
dc.relationOladele I, Michael O, Adediran A, Balogun O, Ajagbe F (2020) Acetylation treatment for the batch Processing of natural fibers: Effects on constituents, tensile properties and surface morphology of selected plant stem fibers. Fibers 8(12) https://doi.org/10.3390/fib8120073
dc.relationRodríguez L, Orrego C (2015) Studies of the tensile and water absorption properties of kaolinite/banana– plantain fiber/polyester composites. J Biobased Mater Bioenergy 9(2): 218-226. https://doi.org/10.1166/jbmb.2015.1513
dc.relationZin M, Abdan K, Norizan M, Mazlan N (2018) The effects of Alkali treatment on the mechanical and chemical properties of banana fibre and adhesion to epoxy resin. Pertanika J. Sci. Technol. 26(1): 161- 176. https://n9.cl/er6p0
dc.relationWyman C, Decker S, Himmel M, Brady J, Skopec C, Viikari L (2005) Hydrolysis of Cellulose and Hemicellulose. In: Dumitriu S (ed.) Polysaccharides: Structural Diversity and Functional Versatility. Marcel Dekker, New York, pp. 1013-1051.
dc.relationDANE (2020) Comercio Internacional (International Commerce, in Spanish). Departamento Administrativo Nacional de Estadística de Colombia (DANE). https://n9.cl/o04fs. Accessed May 21 2020.
dc.relationCongreso de la República (2004). Ley No. 905. 9 p.
dc.relationBianchi M., Cordella M., Menger P. (2023). Regional monitoring frameworks for the circular economy: implications from a territorial perspective. European Planning Studies, 31(1): 36-54. https://doi.org/10.1080/09654313.2022.2057185
dc.relationEllen MacArthur. (2017). The Circular Economy in detail. Ellen MacArthur Foundation. Available on: https://n9.cl/swjc3. [Retrieved July 6 2022].
dc.relationMihai F. (2023). Circular economy and sustainable rural development. Sustainability, 15(3): 2139. https://doi.org/10.3390/su15032139
dc.relationNunes A., J C., Abrahão R., Santos Júnior E., Simioni F., Rotella Junior P., Rocha L. (2023). Public policies for renewable energy: A review of the perspectives for a circular economy. Energies, 16(1): 485. https://doi.org/10.3390/en16010485
dc.relationVinti G., Vaccari M. (2022). Solid waste management in rural communities of developing countries: An overview of challenges and opportunities. Clean Technologies, 4(4): 1138- 1151. https://doi.org/10.3390/cleantechnol4040069
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.subjectBiorefinery
dc.subjectConceptual design
dc.subjectBasic design
dc.subjectWaste
dc.subjectPlantain agro-industry
dc.subjectIngeniería
dc.titleDesign of a biorefinery for the valorization of waste from the plantain agro-industry
dc.typeTrabajo de grado - Doctorado
dc.typehttp://purl.org/coar/resource_type/c_db06
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución