dc.contributorOcampo-Cardona, Rogelio
dc.contributorGrupo de Química Teórica y Bioinformática - QTB (Categoría B)
dc.creatorChacón P., Julián Camilo
dc.date2022-09-26T13:15:34Z
dc.date2022-09-26T13:15:34Z
dc.date2022-09-23
dc.date.accessioned2023-09-06T18:33:05Z
dc.date.available2023-09-06T18:33:05Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18090
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8699094
dc.descriptionIlustraciones, gráficas
dc.descriptionspa:Los estudios de correlación estructura química actividad biológica conocidos por sus siglas en inglés como SAR, son métodos sistemáticos que permiten analizar compuestos candidatos a fármacos anticancerígenos y sus efectos fisiológicos en líneas celulares de cáncer. También, permiten evaluar las tendencias citotóxicas de compuestos en el laboratorio, diseñar o modificar fármacos, realizar estudios farmacocinéticos y de interacción del receptor de algunas drogas. Todo esto abordado desde las áreas de la química, biología y estadística; utilizando descriptores moleculares, resultados de ensayo in vivo e in vitro y métodos quimiométricos que permiten evaluar y determinar cuál es el compuesto óptimo para ser candidato a fármaco anticancerígeno. Este trabajo aborda el acopio y análisis documental, con enfoque principalmente conceptual alrededor de la pregunta ¿en qué consiste una correlación entre la estructura química y la actividad biológica, y su aplicación a algunos compuestos anticancerígenos del tipo taxano (paclitaxel), líquidos iónicos imidazólicos y sales de amonio cuaternaria? Se explica qué es un estudio de correlación estructura actividad, su posible abordaje metodológico investigativo, y en qué datos in vitro se apoya un estudio SAR. Uno de los tratamientos para combatir el cáncer es el uso de fármacos, estos interactúan con una diana específica en la célula cancerígena ocasionando que se inicien procesos apoptóticos, uno de los más utilizados es el paclitaxel (o taxol) el cual interactúa con la β-tubulina afectando la dinámica de los microtúbulos lo que genera una formación anormal del huso mitótico que desencadena en la muerte celular. Por otra parte, los candidatos a fármacos como los líquidos iónicos de imidazolio pueden inducir citotoxicidad mediante estrés oxidativo aumentando las especies reactivas de oxígeno intracelular (ROS) y disminuyendo las actividades enzimáticas antioxidantes. De manera análoga, algunos fármacos que en su estructura tienen la presencia de sales de amonio cuaternario pueden generar inhibición de especies reactivas de oxígeno intracelular o alterar la función normal de proteínas como MPAK y la Hsp90, lo cual da comienzo a los procesos de apoptosis. Con respecto a los estudios SAR del paclitaxel, se demuestra que todas las modificaciones que se realicen en las posiciones C-13, C-4, la posición en el anillo benzoílo del C-2, el anillo oxetano y la fenilisoserina en el C-13 están relacionadas con la pérdida, reducción o aumento de su actividad anticancerígena, además, para que el taxol interactúe con la β-tubulina se indica que debe adoptar una conformación T-taxol. De otra parte, en los LIs de imidazolio se resalta que la aromaticidad del compuesto, el aumento de los carbonos en la cadena lateral y el aumento de la polaridad, pueden contribuir a la actividad anticancerígena. Adicionalmente, las sales de amonio cuaternario se utilizan para generar mayor solubilidad, biodisponibilidad y protección en el fármaco del cual hacen parte. Pero no se argumenta que la presencia de éstas pueda estar relacionada con una actividad anticancerígena.
dc.descriptioneng:Chemical structure biological activity correlation studies, known by its acronym in English as SAR, are systematic methods that allow the analysis of candidate compounds for anticancer drugs and their physiological effects on cancer cell lines. Also, they allow evaluating the cytotoxic tendencies of compounds in the laboratory, designing or modifying drugs, carrying out pharmacokinetic and receptor interaction studies of some drugs. All this approached from the areas of chemistry, biology and statistics; using molecular descriptors, in vivo and in vitro test results and chemometric methods that allow evaluating and determining which is the optimal compound to be an anticancer drug candidate. This work deals with the collection and documentary analysis, with a mainly conceptual approach around the question: what does a correlation between chemical structure and biological activity consist of, and its application to some anticancer compounds of the taxane type (paclitaxel), imidazole ionic liquids and quaternary ammonium salts? It explains what a structure-activity correlation study is, its possible investigative methodological approach, and what in vitro data supports a SAR study. One of the treatments to combat cancer is the use of drugs, these interact with a specific target in the cancer cell causing apoptotic processes to start, one of the most used is paclitaxel (or taxol) which interacts with β- tubulin affecting the dynamics of microtubules which generates an abnormal formation of the mitotic spindle that triggers cell death. On the other hand, drug candidates such as imidazolium ionic liquids can induce cytotoxicity through oxidative stress by increasing intracellular reactive oxygen species (ROS) and decreasing antioxidant enzyme activities. Similarly, some drugs that contain quaternary ammonium salts in their structure can inhibit intracellular reactive oxygen species or alter the normal function of proteins such as MPAK and Hsp90, which initiates apoptotic processes. With respect to the SAR studies of paclitaxel, it is shown that all modifications made at the C-13, C-4 positions, the benzoyl ring position at C-2, the oxetane ring and the phenylisoserine at C- 13 are related to the loss, reduction or increase of its anticancer activity, in addition, for taxol to interact with β-tubulin it is indicated that it must adopt a T-taxol conformation. On the other hand, in imidazolium LIs it is highlighted that the aromaticity of the compound, the increase in carbons in the side chain and the increase in polarity, can contribute to anticancer activity. Additionally, quaternary ammonium salts are used to generate greater solubility, bioavailability and protection in the drug of which they are part. But it is not argued that the presence of these may be related to anticancer activity.
dc.descriptionLista de siglas o abreviaturas / 1. Resumen / 2. Planteamiento del problema / 3. Justificación / 4. Objetivos / 4.1 General / 4.2 Específicos / 5. Metodología / 5.1 Generalidades / 5.2 Metodología específica por subtemas / 5.2.1 Subtema sobre estudios de relación estructura actividad (SAR) / 5.2.2 Subtema sobre estudios de relación estructura actividad de taxol en cáncer / 5.2.3 Subtema sobre estudios de relación estructura actividad de líquidos iónicos de imidazolio en cáncer / 5.2.4 Subtema sobre estudios de relación estructura actividad de sales de amonio cuaternario en cáncer / 6. Resultados y discusión / 6.1 Estudios de relación estructura actividad (SAR) / 6.1.1 ¿Por qué realizar un estudio SAR? / 6.1.2 Algunas investigaciones que constituyen la historia de SAR / 6.1.3 Generalidades de los estudios SAR / 6.1.3.1 Caracterización de compuestos químicos para los estudios SAR / La estructura molecular y propiedades fisicoquímicas / Descriptores unidimensionales (1D) / Descriptores bidimensionales (2D) / Descriptores tridimensionales (3D) / 6.1.3.2 Determinación de la actividad biológica de los compuestos anticancerígenos / Ensayo de reducción MTT / Ensayo de unión a microtúbulos / 6.1.3.3 Algunos métodos quimiométricos utilizados para los estudios SAR / Análisis de componentes principales / K-vecino más cercano / Árbol de decisión (Decision Tree) / 5 Bosque aleatorio (Random Forest) / 6.1.3.2 Software para estudios SAR / 6.2 El cáncer como área de estudio / 6.3 Estudios de relación estructura actividad de taxol en cáncer / 6.3.1 Generalidades / 6.3.2 Los taxanos y su actividad anticancerígena / 6.3.3 El taxol (paclitaxel) y algunos estudios de relación estructura actividad (SAR) / 6.3.3.1 Efecto de las modificaciones en los anillos del paclitaxel sobre su actividad anticancerígena / 6.3.3.2 Modificaciones en la cadena lateral C-13 y su remoción en el paclitaxel / 6.3.3.3 Estudios SAR del paclitaxel en la actualidad / 6.4 Estudios de relación estructura actividad de líquidos iónicos de imidazolio en cáncer / 6.4.1 Algunas generalidades sobre líquidos iónicos de imidazolio / 6.4.2 Líquido iónico de imidazolio y su actividad anticancerígena / 6.4.3 Líquidos iónicos de imidazolio y algunos estudios de relación estructura actividad (SAR) en cáncer / 6.4.3.1 Efecto de la variación en la cadena lateral del imidazolio en la actividad anticancerígena / 6.4.3.2 Efecto de la variación del anión del imidazolio en la actividad anticancerígena / 6.4.3.3 Técnicas para los estudios SAR en LIs de imidazolio / 6.5 Estudios de relación estructura actividad SAR de sales de amonio cuaternario en cáncer / 6.5.1 Generalidades / 6.5.2 Sales de amonio cuaternario y su actividad anticancerígena / 6.5.3 Sales de amonio cuaternario y algunos estudios de relación estructura actividad (SAR) / 6.5.3.1 Derivados de quitosano de amonio cuaternario / 6.5.3.2 Derivados de diosgenina amonio cuaternario / 6.5.3.3 Derivados de quinuclidina de geldanamicina amonio cuaternario / 7. Conclusiones / 8. Bibliografía
dc.descriptionMaestría
dc.descriptionMagister en Química
dc.descriptionSales de amonio cuaternario
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherMaestría en Química
dc.relationVerma, R. P. & Hansch, C. Cytotoxicity of Organic Compounds against Ovarian Cancer Cells:  A Quantitative Structure−Activity Relationship Study. Mol. Pharm. 3, 441–450 (2006).
dc.relationReece, J. División de la Célula | CancerQuest. https://www.cancerquest.org/es/biologia-delcancer/division-de-la-celula (2017).
dc.relationReece, Urry, Cain, Wasserman, Minorsky, J. Campbell Biology. (2017).
dc.relationMoini, J., Badolato, C. & Ahangari, R. Chapter 21 - Chemotherapy. in Epidemiology of Endocrine Tumors 473–488 (Elsevier, 2020). doi:10.1016/B978-0-12-822187-7.00006-2.
dc.relationAMBOSS. Chemotherapeutic agents - Knowledge @ AMBOSS. https://www.amboss.com/us/knowledge/Chemotherapeutic_agents/.
dc.relationMcKinney, J. D. The Practice of Structure Activity Relationships (SAR) in Toxicology. Toxicol. Sci. 56, 8–17 (2000).
dc.relationGrant, R. L., Combs, A. B. & Acosta, D. Experimental Models for the Investigation of Toxicological Mechanisms. Compr. Toxicol. 203–224 (2010) doi:10.1016/b978-0-08-046884-6.00110-x.
dc.relationPenta, S. Introduction to Coumarin and SAR. in Advances in Structure and Activity Relationship of Coumarin Derivatives 1–8 (Elsevier Inc., 2015). doi:10.1016/B978-0-12-803797-3.00001-1.
dc.relationWaters, M. D. et al. Structure-Activity Relationships: Computerized Systems. Methods to Assess DNA Damage Repair Interspecies Comparsions 201–230 (1994).
dc.relationCruz-Cruz, E. M. ¿Es necesario conocer el proceso de diseño de fármacos antes de su prescripción? Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2015; 40(7) (2015).
dc.relationBreastcancer.org. Taxol. https://www.breastcancer.org/es/medicamentos/taxol (2022).
dc.relationNational Cancer Institute. Drugs Approved for Breast Cancer - National Cancer Institute. Nih-Nci vol. 9 9 https://www.cancer.gov/about-cancer/treatment/drugs/breast (2021)
dc.relationNaaz, F., Haider, M. R., Shafi, S. & Yar, M. S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem. 171, 310–331 (2019).
dc.relationFauzee, N. J. S., Dong, Z. & Wang, Y. L. Taxanes: Promising anti-cancer drugs. Asian Pacific J. Cancer Prev. 12, 837–851 (2011).
dc.relationBakshi, K. et al. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. Biochim. Biophys. Acta - Biomembr. 1862, 183103 (2020).
dc.relationWang, D. et al. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes. Langmuir 32, 12579–12592 (2016).
dc.relationJovanović-Šanta, S. et al. Anticancer and antimicrobial properties of imidazolium based ionic liquids with salicylate anion. J. Serbian Chem. Soc. 85, 291–303 (2020)
dc.relationLi, X., Ma, J. & Wang, J. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide. Ecotoxicol. Environ. Saf. 120, 342–348 (2015).
dc.relationAl-Blewi, F. et al. A Profile of the In Vitro Anti-Tumor Activity and In Silico ADME Predictions of Novel Benzothiazole Amide-Functionalized Imidazolium Ionic Liquids. Int. J. Mol. Sci. 20, (2019).
dc.relationZakharova, L. Y. et al. Chapter 14 - Self-assembled quaternary ammonium surfactants for pharmaceuticals and biotechnology. in Organic Materials as Smart Nanocarriers for Drug Delivery (ed. Grumezescu, A. M.) 601–618 (William Andrew Publishing, 2018). doi:https://doi.org/10.1016/B978-0-12-813663-8.00014-2.
dc.relationCesaretti, A. et al. Spectroscopic Investigation of the pH Controlled Inclusion of Doxycycline and Oxytetracycline Antibiotics in Cationic Micelles and Their Magnesium Driven Release. J. Phys. Chem. B 118, 8601–8613 (2014).
dc.relationGuirao-Goris, S. J. Utilidad y tipos de revisión de literatura. Rev. ENE enfermería 9, 1–12 (2015).
dc.relationGómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G. & Betancourt-Buitrago, L. A. Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA 81, 158–163 (2014).
dc.relationBarderas-Manchado, A., Estrada-Lorenzo, J. M. & González-Gil, T. Estrategias para la búsqueda bibliográfica. Educare21 55, 1–9 (2009).
dc.relationMontana, M., Mathias, F., Terme, T. & Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem. 163, 136–147 (2019).
dc.relationMatos, L. H. S., Masson, F. T., Simeoni, L. A. & Homem-de-Mello, M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur. J. Med. Chem. 143, 1779–1789 (2018).
dc.relationMoher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 6, e1000097 (2009).
dc.relationNing, X. & Karypis, G. In silico structure-activity-relationship (SAR) models from machine learning: A review. Drug Development Research vol. 72 138–146 (2011).
dc.relationWermuth, C. G., Grisoni, S., Villoutreix, B. & Rocher, J. P. Application Strategies for the Primary Structure-Activity Relationship Exploration. in The Practice of Medicinal Chemistry: Fourth Edition 301–318 (Elsevier Inc., 2015). doi:10.1016/B978-0-12-417205-0.00012-2.
dc.relationFrey, K. M. Structure activity relationship (SAR) maps: A student-friendly tool to teach medicinal chemistry in integrated pharmacotherapy courses. Curr. Pharm. Teach. Learn. 12, 339–346 (2020).
dc.relationTong, W., Welsh, W. J., Shi, L. & Perkins, R. Structure-activity relationship aprproaches and aplications. Environ. Toxicol. Chem. 22, 1680–1695 (2003).
dc.relationCros, A. F. A. Action de l’alcool amylique sur l’organisme. (Strasbourg, 1863).
dc.relationBotana López, L. M., Landoni, F. & Martín Jiménez, T. Farmacología y Terapéutica Veterinaria. (2002).
dc.relationCrum Brown, A. & Fraser, T. R. On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebata, codeia, morphia, and nicotia. J. Anat. 2, 224–242 (1868).
dc.relationMata, E. Qsar Relación Estructura-Actividad Cuantitativa (Quantitative Structure-Activity Relationship) Historia. in 1–40 (1939).
dc.relationPerouansky, M., Penna S., A. & Gutiérrez R., R. The overton in meyer-overton: A biographical sketch commemorating the 150th anniversary of Charles Ernest Overton’s birth. Rev. Médica Clínica Las Condes 28, 537–541 (2015)
dc.relationTong, W., Welsh, W. J., Shi, L. & Fang, H. Enfoques y aplicaciones de la relación estructura-actividad. Toxicol. Ambient. y Química 22, (2009).
dc.relationHansch, C., Hoekman, D., Leo, A., Weininger, D. & Selassie, C. D. Chem-bioinformatics: Comparative QSAR at the interface between chemistry and biology. Chem. Rev. 102, 783–812 (2002).
dc.relationFrank, I. & Todeschini, R. The Data Analysis Handbook. Data Handling in Science and Technology vol. 14 1–352 (1994)
dc.relationCárdenas, F., Tripaldi, P. & Rojas, C. Estudio de la Relación Cuantitativa Estructura-Actividad de pesticidas mediante técnicas de clasificación. ACI Av. en Ciencias e Ing. 6, (2014).
dc.relationSchultz, T. W., Cronin, M. T. D., Walker, J. D. & Aptula, A. O. Quantitative structure-activity relationships (QSARS) in toxicology: A historical perspective. J. Mol. Struct. THEOCHEM 622, 1–22 (2003)
dc.relationBogyo, M. & Ward, G. Toxoplasma gondii Chemical Biology. Toxoplasma Gondii: The Model Apicomplexan - Perspectives and Methods: Second Edition (Elsevier, 2013). doi:10.1016/B978-0-12- 396481-6.00021-0.
dc.relationZhang, D. & Meng, F. A Comprehensive Overview of Structure-Activity Relationships of SmallMolecule Splicing Modulators Targeting SF3B1 as Anticancer Agents. ChemMedChem 15, 2098–2120 (2020).
dc.relationLiu, H., Long, S., Rakesh, K. P. & Zha, G. F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem. 185, 111804 (2020).
dc.relationSilverman, R. B. & Holladay, M. The Organic Chemistry of Drug Design and Drug Action. The Organic Chemistry of Drug Design and Drug Action (2014). doi:10.1016/b978-0-08-051337-9.50010- 9.
dc.relationLin, X., Li, X. & Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 25, (2020).
dc.relationMacina, O. T., Zhang, Y. P. & Rosenkranz, H. S. Improved Predictivity of Chemical Carcinogens: The Use of a Battery of SAR Models. in Carcinogenicity 227–250 (CRC Press, 2021). doi:10.1201/9781003067641-9.
dc.relationChoudhuri, S., Arvidson, K. & Chanderbhan, R. Carcinogenesis. Mechanisms and models. Veterinary Toxicology (Elsevier Inc., 2012). doi:10.1016/B978-0-12-385926-6.00026-0.
dc.relationLozano-Aponte, J. & Scior, T. ¿Qué sabe Ud. acerca de…QSAR? Rev. Mex. Ciencias Farm. 43, 82–84 (2012).
dc.relationBrown, S. D., Blank, T. B., Sum, S. T. & Weyer, L. G. Chemometrics. Anal. Chem. 66, 315–359 (1994)
dc.relationTodeschini, R. & Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH 11, 688 (2000).
dc.relationBajusz, D., Rácz, A. & Héberger, K. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. in Comprehensive Medicinal Chemistry III vols 3– 8 329–378 (2017).
dc.relationVisco, D. P. & Chen, J. J. The Signature Molecular Descriptor in Molecular Design: Past and Current Applications. Comput. Aided Chem. Eng. 39, 315–343 (2016).
dc.relationFaulon, J.-L. & Bender, A. Handbook of Chemoinformatics Algorithms. (2010)
dc.relationDanishuddin & Khan, A. U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov. Today 21, 1291–1302 (2016).
dc.relationGrisoni, F., Ballabio, D., Todeschini, R. & Consonni, V. Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach. 1800, 287–311 (2018)
dc.relationParthasarathi, R. & Dhawan, A. In Silico Approaches for Predictive Toxicology. in In Vitro Toxicology 91–109 (Elsevier Inc., 2018). doi:10.1016/B978-0-12-804667-8.00005-5
dc.relationReyes, L. M. S. Aplicaciones biológicas de la teoría QSAR en el control del mosquito Aedes aegypti L. (Universidad Nacional De la Plata, 2020).
dc.relationRodríguez, M. & María Narvaez, A. Un Acercamiento Didáctico Entre Química Orgánica Y Álgebra Lineal a Didactic Approach Between Organic Chemistry and Linear Algebra. Acta Latinoam. Mat. Educ. 32, 222–230 (2019).
dc.relationCherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).
dc.relationMosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
dc.relationGanot, N., Meker, S., Reytman, L., Tzubery, A. & Tshuva, E. Y. Anticancer metal complexes: synthesis and cytotoxicity evaluation by the MTT assay. J. Vis. Exp. 1–6 (2013) doi:10.3791/50767
dc.relationGutiérrez, L. et al. Nanotechnology in Drug Discovery and Development. in Comprehensive Medicinal Chemistry III (eds. Chackalamannil, S., Rotella, D. & Ward, S. E.) 264–295 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-12-409547-2.12292-9.
dc.relationCastro de Pardo, C. Pruebas de tamizaje para determinar efectos citotóxicos en extractos, fracciones o sustancias, utilizando la prueba del MTT. vol. 1 317–321 (2006).
dc.relationBaya, A. el. Tubulin polymerisation measurement – made easy! https://www.tebubio.com/blog/2016/01/07/tubulin-polymerisation-measurement-made-easy/ (2016).
dc.relationMirigian, M., Mukherjee, K., Bane, S. L. & Sackett, D. L. Measurement of In vitro microtubule polymerization by turbidity and fluorescence. in Methods in Cell Biology vol. 115 215–229 (© 2013 Elsevier, Inc. All rights reserved., 2013).
dc.relationDesai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83– 117 (1997).
dc.relationHeusele, C., Dominique, B. & Marie, C. Is microtubule assembly a biphasic process ? A fluorimetric study using 4 ’, 6-diamidino-2-phenylindole as a probe. Eur. J. Biochem. 165, 613–620 (1987).
dc.relationBonne, D., Heuséle, C., Simon, C. & Pantaloni, D. 4’,6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules. J. Biol. Chem. 260, 2819–2825 (1985).
dc.relationGaskin, F. Analysis of Microtubule Assembly Kinetics Using Turbidimetry. in Microtubule Dynamics:Methods and Protocols (ed. Straube, A.) 99–105 (2011). doi:10.1007/978-1-61779-252-6.
dc.relationInc., C. HTS-Tubulin Polymerization Assay Biochem Kit TM Manual V 7.0. vol. Manual V 7 6–7.
dc.relationGiuliani, A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov. Today 22, 1069–1076 (2017).
dc.relationBURT, C. Factor analysis and canonical correlations. Br. J. Stat. Psychol. 1, 95–106 (1948).
dc.relationRencher, A. C. Methods of Multivariate Analysis. Methods of Multivariate Analysis (2002). doi:10.1002/0471271357.
dc.relationZhang, Z. & Castelló, A. Principal components analysis in clinical studies. Ann. Transl. Med. 5, 3–9 (2017).
dc.relationBagnato, J. I. Clasificar con K-Nearest Neighbor ejemplo en Python. July, 10th https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo-en-python/ (2018).
dc.relationZapata-Tapasco, A., Pérez-Londoño, S. & Mora-Flórez, J. Método basado en clasificadores k-NN parametrizados con algoritmos genéticos y la estimación de la reactancia para localización de fallas en sistemas de distribución. Rev. Fac. Ing. 220–232 (2014)
dc.relationMoujahid, A., Inza, I. & Larrañaga, P. Tema 5. Clasificadores K-NN. Dep. ciencias la Comput. e inteligancia Artif. (2019).
dc.relationZaidi, S. A. R. Nearest neighbour methods and their applications in design of 5G & beyond wireless networks. ICT Express 7, 414–420 (2021)
dc.relationLiu, H., Zhao, Y., Zhang, L. & Chen, X. Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative Filtering with Global Effect Removal. Mol. Ther. - Nucleic Acids 13, 303–311 (2018).
dc.relationArian, R., Hariri, A., Mehridehnavi, A., Fassihi, A. & Ghasemi, F. Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm. Comput. Biol. Chem. 86, 107269 (2020).
dc.relationRajaguru, H. & Sannasi Chakravarthy, S. R. Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Asian Pacific J. Cancer Prev. 20, 3777–3781 (2019)
dc.relationShi, G. Decision Trees. in Data Mining and Knowledge Discovery for Geoscientists 111–138 (Elsevier, 2014). doi:10.1016/B978-0-12-410437-2.00005-9.
dc.relationKingsford, C. & Salzberg, S. L. What are decision trees? Classifying with decision trees. Nat. Biotechnol. 26, 1011–1013 (2008)
dc.relationGehrke, J., Loh, W. Y. & Ramakrishnan, R. Tutorial 1. classification and regression: Motiey ∗Can∗ grow on trees. in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1–72 (Association for Computing Machinery (ACM), 1999). doi:10.1145/312179.312185
dc.relationCarlos, A. : & López, P. Predicción de la interacción de proteínas relacionadas con el Alzheimer a partir de su estructura primaria. (Universitat Oberta de Catalunya (UOC), 2020).
dc.relationLantz, B. Machine Learning with R. Machine Learning with R (2015). doi:10.1007/978-981-10-6808- 9.
dc.relationArboles de decisión. https://medium.com/greyatom/decision-trees-asimple-way-to-visualize-a-decision-dc506a403aeb.
dc.relationBarrientos, R. et al. Árboles de decisión como herramienta en el diagnóstico Médico. Rev. Médica la Univ. Veracruzana 20–24 (2009).
dc.relationBreiman, L., Friedman, J.H., Olshen, R.A., & Stone, C. J. Classification And Regression Trees. (1984)
dc.relationCutler, A. & Stevens, J. R. [23] Random Forests for Microarrays. Methods in Enzymology vol. 411 422–432 (2006).
dc.relationSchierz, A. C. Virtual screening of bioassay data. J. Cheminform. 1, 1–12 (2009)
dc.relationMocak, J. Chemometrics in Medicine and Pharmacy. Nov. Biotechnol. Chim. 11, 11–26 (2012).
dc.relationAli, J., Khan, R., Ahmad, N. & Maqsood, I. Random forests and decision trees. IJCSI Int. J. Comput. Sci. Issues 9, 272–278 (2012)
dc.relationBreiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001)
dc.relationAmat Rodrigo, J. Árboles de predicción: bagging, random forest, boosting y C5.0. GitHub https://rpubs.com/Joaquin_AR/255596 (2017).
dc.relationRahman, R., Haider, S., Ghosh, S. & Pal, R. Design of probabilistic random forests with applications to anticancer drug sensitivity prediction. Cancer Inform. 15, 57–73 (2016).
dc.relationLind, A. P. & Anderson, P. C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One 14, 1–20 (2019).
dc.relationKadioglu, O., Klauck, S. M., Fleischer, E., Shan, L. & Efferth, T. Selection of safe artemisinin derivatives using a machine learning-based cardiotoxicity platform and in vitro and in vivo validation. Arch. Toxicol. 95, 2485–2495 (2021).
dc.relationZhang, X. et al. Prediction of Chemosensitivity in Multiple Primary Cancer Patients Using Machine Learning. Anticancer Res. 41, 2419 LP – 2429 (2021).
dc.relationMATLAB - MathWorks - MATLAB & Simulink. MathWorks https://www.mathworks.com/products/matlab.html (2022).
dc.relationSybyl - csic.es. http://sitios.csic.es/web/calculo-cientifico/sybyl.
dc.relationRobb, M. New Chemistry with Gaussian 16 & GaussView 6. Expanding the limits of computational chemistry https://gaussian.com/g16new/ (2022).
dc.relationRStudio Team. RStudio | Open source & professional software for data science teams - RStudio. RStudio Inc. https://www.rstudio.com/ (2020).
dc.relationKNIME. KNIME | Open for Innovation. KNIME https://www.knime.com/ (2021)
dc.relationQuiminformática reproducible a través de flujos de trabajo visuales | KNIME. https://www.knime.com/reproducible-cheminformatics-visual-workflows
dc.relationGuha, R. Chemical informatics functionality in R. J. Stat. Softw. 18, 1–16 (2007).
dc.relationVoicu, A., Duteanu, N., Voicu, M., Vlad, D. & Dumitrascu, V. The rcdk and cluster R packages applied to drug candidate selection. J. Cheminform. 12, 1–8 (2020).
dc.relationBeisken, S., Meinl, T., Wiswedel, B., Figueiredo, L. F. De & Berthold, M. KNIME-CDK : Workflowdriven cheminformatics. BMC Bioinformatics 2–5 (2013).
dc.relationHoran, K., Yiqun, C., Tyler, B. & Thomas, G. ChemmineR: Cheminformatics Toolkit para R. https://www.bioconductor.org/packages/devel/bioc/vignettes/ChemmineR/inst/doc/ChemmineR.html
dc.relationMatesanz R., R. Optimización de la interacción microtúbulo-taxol: diseño de taxanos de alta afinidad. (Universidad Autónoma de Madrid, 2011).
dc.relationNogales, E. et al. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 424–427 (1995).
dc.relationNogales, E. Structural insights into microtubule function. Rev. Lit. Arts Am. 278–298 (2000) doi:10.1146/annurev.biochem.73.011303.074048.
dc.relationViñas Domínguez, S. Enfermedades de tubulinas. (Universidad de Cantabria, 2016).
dc.relationNogales, E. & Wang, H.-W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).
dc.relationNogales, E. & Wang, H.-W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006).
dc.relationLöwe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).
dc.relationMarcano, D. & Hasegawa, M. Fitoquímica Orgánica. (Consejo de Desarrollo Científico y Humanistico, 2018).
dc.relationKingston, D. G. ., Molinero, A. . & Rimoldi, J. . Progress in the chemistry of organic natural products. (Springer-Verlag/Wien, 1993). doi:10.1007/978-3-7091-9242-9.
dc.relationChanbner, B. & Mujagic, H. Taxano y sus derivados. in HARRISON. manual de oncología (ed. Fraga, J. de L.) 24–31 (2009).
dc.relationCentelles, J. J. & Imperial, S. Paclitaxel Descubrimiento, Propiedades y uso Clínico. Offram 29, 68–75 (2010).
dc.relationJair Barrales-Cureño, H. & Marco, S. H. Bioquímica de los Taxoides utilizados contra el cáncer. Rev. Educ. Bioquímica 30, 12–20 (2011).
dc.relationMosca, L., Ilari, A., Fazi, F., Assaraf, Y. G. & Colotti, G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updat. 54, 100742 (2021).
dc.relationUbeda, R. A. Biotransformaciones en la síntesis de antitumorales. (universidad complutense, 2016).
dc.relationSánchez-Murcia, P. A., Mills, A., Cortés-Cabrera, Á. & Gago, F. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J. Comput. Aided. Mol. Des. 33, 627–644 (2019).
dc.relationZheng, L. L., Wen, G., Yao, Y. X., Li, X. H. & Gao, F. Design, Synthesis, and Anticancer Activity of Natural Product Hybrids With Paclitaxel Side Chain Inducing Apoptosis in Human Colon Cancer Cells. Nat. Prod. Commun. 15, 1–11 (2020).
dc.relationSharma, S. et al. Dissecting Paclitaxel–Microtubule Association: Quantitative Assessment of the 2′-OH Group. Biochemistry 52, 2328–2336 (2013).
dc.relationKellogg, E. H. et al. Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. J. Mol. Biol. 429, 633–646 (2017).
dc.relationRisinger, A. L., Hastings, S. D. & Du, L. Taccalonolide C-6 Analogues, Including Paclitaxel Hybrids, Demonstrate Improved Microtubule Polymerizing Activities. J. Nat. Prod. 84, 1799–1805 (2021).
dc.relationNuijen, B., Bouma, M., Schellens, J. H. M. & Beijnen, J. H. Progress in the development of alternative pharmaceutical formulations of taxanes. Invest. New Drugs 19, 143–153 (2001).
dc.relationEngblom, P. et al. Effects of paclitaxel with or without cremophor EL on cellular clonogenic survival and apoptosis. Eur. J. Cancer 35, 284–288 (1999).
dc.relationElhissi, A. M. A. et al. Chapter 18 - Taxane anticancer formulations: challenges and achievements. in Advances in Medical and Surgical Engineering (eds. Ahmed, W., Phoenix, D. A., Jackson, M. J. & Charalambous, C. P.) 347–358 (Academic Press, 2020). doi:https://doi.org/10.1016/B978-0-12- 819712-7.00018-8.
dc.relationEngels, F. K., Mathot, R. A. A. & Verweij, J. Alternative drug formulations of docetaxel: a review. Anticancer. Drugs 18, 95–103 (2007).
dc.relationImmordino, M. L. et al. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J. Control. release 91, 417–429 (2003).
dc.relationTannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).
dc.relationKhan, M. A., Carducci, M. A. & Partin, A. W. The evolving role of docetaxel in the management of androgen independent prostate cancer. J. Urol. 170, 1709–1716 (2003).
dc.relationNabell, L. & Spencer, S. Docetaxel with Concurrent Radiotherapy in Head and Neck Cancer. Semin. Oncol. 30, 89–93 (2003).
dc.relationJordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825 (1996).
dc.relationJordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. 90, 9552–9556 (1993).
dc.relationDeVita, V. T. & Lawrence, T. S. Rosenberg’s cancer: principles \& practice of oncology. DeVita, Vincent T 1855–1893 (2008).
dc.relationChecchi, P. M., Nettles, J. H., Zhou, J., Snyder, J. P. & Joshi, H. C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci. 24, 361–365 (2003).
dc.relationCrown, J. & O’Leary, M. The taxanes: An update. Lancet 355, 1176–1178 (2000).
dc.relationHevia, L. G. & Fanarraga, M. L. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. J. Nanobiotechnology 18, 181 (2020).
dc.relationAlushin, G. M. et al. High-resolution microtubule structures reveal the structural transitions in αβtubulin upon GTP hydrolysis. Cell 157, 1117–1129 (2014).
dc.relationZhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell 162, 849–859 (2015).
dc.relationArnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).
dc.relationSchiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules. Proc. Natl. Acad. Sci. U. S. A. 77, 1561– 1565 (1980).
dc.relationTurner, P. F. & Margolis, R. L. Taxol-induced Bundling of Brain-derived Microtubules. J Cell Biol. 99, (1984).
dc.relationYvon, A. M. C., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–959 (1999).
dc.relationJordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A. 90, 9552–9556 (1993).
dc.relationSwindell, C. S. Taxane diterpene synthesis strategies. A review. Org. Prep. Proced. Int. 23, 465–543 (1991).
dc.relationXiang, F., Yu, J., Yin, R., Ma, Y. & Yu, L. Structure-activity relationship of taxol inferring from docking taxol analogues to microtubule binding site. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 64, 551–556 (2009).
dc.relationKingston, D. G. I. Taxol: The chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 12, 222–227 (1994).
dc.relationMellado, W. et al. Preparation and Biological Activity of Taxol Acetates. Biochem. Biophys. Res. Commun. 124, 329 (1984).
dc.relationShanker, N. et al. Enhanced microtubule binding and tubulin assembly properties of conformationally constrained paclitaxel derivatives. Biochemistry 46, 11514 (2007).
dc.relationBaloglu, E., Kingston, D. G. ., Patel, P., Chatterjee, S. K. & Bane, S. L. Synthesis and microtubule binding of fluorescent paclitaxel derivatives. Bioorganic Med. Chem. Lett. 11, 2249–2252 (2001).
dc.relationJagtap, P. G., Baloglu, E., Barron, D. M., Bane, S. & Kingston, D. G. I. Design and synthesis of a combinatorial chemistry library of 7-acyl, 10-acyl, and 7,10-diacyl analogues of paclitaxel (taxol) using solid phase synthesis. J. Nat. Prod. 65, 1136–1142 (2002).
dc.relationBaloglu, E. et al.Synthesis and biological evaluation of C-3′NH/C-10 and C-2/C-10 modified paclitaxel analogues. Bioorganic Med. Chem. 11, 1557–1568 (2003).
dc.relationLiu, C., Schilling, J. K., Ravindra, R., Bane, S. & Kingston, D. G. I. Syntheses and bioactivities of macrocyclic paclitaxel bis-lactones. Bioorganic Med. Chem. 12, 6147–6161 (2004).
dc.relationPaik, Y. et al. Rotational-echo double-resonance NMR distance measurements for the tubulin-bound paclitaxel conformation. J. Am. Chem. Soc. 129, 361–370 (2007).
dc.relationGanesh, T. et al. Evaluation of the tubulin-bound paclitaxel conformation: Synthesis, biology, and SAR studies of C-4 to C-3′ bridged paclitaxel analogues. J. Med. Chem. 50, 713–725 (2007).
dc.relationKingston, D. G. I. & Newman, D. J. Taxoids: Cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Dev. 10, 130–144 (2007).
dc.relationKingston, D. G. I. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 68, 1844–1854 (2007).
dc.relationParness, J., Kingston, D. G. I., Powell, R. G., Harracksingh, C. & Horwitz, S. B. Structure-activity study of cytotoxicity and microtubule assembly in vitro by taxol and related taxanes. Biochem. Biophys. Res. Commun. 105, 1082–1089 (1982).
dc.relationKingston, D. G. I. The chemistry of Taxol. Pharmacol. Ther. 52, 1–34 (1991).
dc.relationKingston, D. G. I. Taxol : the chemistry and structure-activity relationships of a novel anticancer agent. 222–227 (1994).
dc.relationGrover, S. et al. Differential Effects of Paclitaxel (Taxol) Analogs Modified at Positions C-2, C-7, and C-3′ on Tubulin Polymerization and Polymer Stabilization: Identification of a Hyperactive Paclitaxel Derivative. Biochemistry 34, 3927–3934 (1995).
dc.relationRan, Y. et al. Interaction of a fluorescent derivative of paclitaxel (taxol) with microtubules and tubulincolchicine. Biochemistry 35, 14173–14183 (1996).
dc.relationWatson, J. M. et al. Identification of the structural region of taxol that may be responsible for cytokine gene induction and cytotoxicity in human ovarian cancer cells. Cancer Chemother. Pharmacol. 41, 391–397 (1998).
dc.relationKingston, D. G. I. et al. Synthesis and biological evaluation of 2-acyl analogues of paclitaxel (Taxol). J. Med. Chem. 41, 3715–3726 (1998).
dc.relationHe, L. et al. A common pharmacophore for taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain. Biochemistry 39, 3972–3978 (2000).
dc.relationChordia, M. D., Chaudhary, A. G., Kingston, D. G. I., Qing Jiang, Y. & Hamel, E. Synthesis and biological evaluation of 4-deacetoxypaclitaxel. Tetrahedron Lett. 35, 6843–6846 (1994).
dc.relationNeiding, K. A., Gharpure, J. M., Kingston, D. G. I. & Rimoldi, K. Synthesis and Biological Evaluation of 4-deacetylpaclitaxel. Tamhdiom Lett. 35, 6839–6842 (1994).
dc.relationChaudhary, A. G., Rimoldi, J. M. & Kingston, D. G. I. Interconversion of Taxol and 7-epi-Taxoll. J. Org. Chem. 58, 3798–3799 (1993)
dc.relationChen, S. H. et al. Synthesis of 7-deoxy- and 7,10-dideoxytaxol via radical intermediates. J. Org. Chem. 58, 5028–5029 (1993).
dc.relationKingston, D. G. I. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 68, 1844–1854 (2007).
dc.relationChen, S. H. et al. Synthesis of 7-Deoxy- and 7,10-Dideoxytaxol via Radical Intermediates. J. Org. Chem. 58, 5028–5029 (1993).
dc.relationChaudhary, A. G., Rimoldi, J. M. & Kingston, D. G. I. Modified taxols. 10. Preparation of 7-deoxytaxol, a highly bioactive taxol derivative, and interconversion of taxol and 7-epi-taxol. J. Org. Chem. 58, 3798–3799 (1993).
dc.relationChaudhary, A. & Kingston, D. Synthesis of 10-deacetoxytaxol and 10-deoxytaxotere. Tetrahedron Lett. 34, 4921–4924 (1993).
dc.relationAlcaraz, A. A., Mehta, A. K., Johnson, S. A. & Snyder, J. P. T-Taxol conformation. J. Med. Chem. 49, 2478 (2006).
dc.relationSnyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H. & Nogales, E. The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density. Proc. Natl. Acad. Sci. U. S. A. 98, 5312–5316 (2001).
dc.relationGeorg, G. I. et al. Synthesis and biology of substituted 3′-phenyl taxol analogues. Bioorganic Med. Chem. Lett. 4, 2331–2336 (1994).
dc.relationXie, C. et al. Synthesis and biological activity of C-7, C-9 and C-10 modified taxane analogues from 1-deoxybaccatin VI. Bioorg. Med. Chem. 28, 115736 (2020).
dc.relationSheng, J. et al. Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues. Chinese J. Org. Chem. 39, 377–389 (2019).
dc.relationHayes, R., Warr, G. G. & Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 115, 6357–6426 (2015).
dc.relationDean, P. M., Pringle, J. M. & MacFarlane, D. R. Structural analysis of low melting organic salts: Perspectives on ionic liquids. Phys. Chem. Chem. Phys. 12, 9144–9153 (2010).
dc.relationvan Rantwijk, F. Ionic Liquids in biotransformations and organocatalysis. Solvents and Beyond. Edited by Pablo Domínguez de María. Angew. Chemie Int. Ed. 52, 3065–3066 (2013).
dc.relationEgorova, K. S., Gordeev, E. G. & Ananikov, V. P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 117, 7132–7189 (2017).
dc.relationVerdia, P. Diseño y síntesis de Líquidos Iónicos para aplicaciones específicas. (Universidad de Vigo, 2012).
dc.relationHolbrey, J. D. & Seddon, K. R. Ionic Liquids. Clean Technol. Environ. Policy 1, 223–236 (1999).
dc.relationMarrucho, I. M., Branco, L. C. & Rebelo, L. P. N. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng. 5, 527–546 (2014).
dc.relationDobler, D., Schmidts, T., Klingenhöfer, I. & Runkel, F. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm. 441, 620–627 (2013).
dc.relationFerraz, R. et al. Antitumor Activity of Ionic Liquids Based on Ampicillin. ChemMedChem 10, 1480– 1483 (2015).
dc.relationReslan, M. & Kayser, V. Ionic liquids as biocompatible stabilizers of proteins. Biophysical Reviews vol. 10 781–793 (2018)
dc.relationOzokwelu, D., Zhang, S., Okafor, O. C., Cheng, W. & Litombe, N. Preparation and Characterization of Ionic Liquids. in Novel Catalytic and Separation Processes Based on Ionic Liquids 13–44 (2017). doi:10.1016/b978-0-12-802027-2.00002-9.
dc.relationWeingärtner, H. Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chemie - Int. Ed. 47, 654–670 (2008).
dc.relationRodríguez, I. Líquidos iónicos. propiedades, síntesis y aplicaciones. (Universidad nacional de educación a distancia , 2017).
dc.relationOlivier-Bourbigou, H., Magna, L. & Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 373, 1–56 (2010).
dc.relationHallett, J. P. & Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011).
dc.relationSigma-Aldrich. Imidazolium - Ionic Liquids | Sigma-Aldrich | Sigma-Aldrich. https://www.sigmaaldrich.com/chemistry/chemistry-products.html?TablePage=1 (2020).
dc.relationImidazolium Ionic Liquids. https://www.alfa-chemistry.com/products/imidazolium-ionic-liquids151.htm.
dc.relationAmeta, K. L. & Dandia, A. Green chemistry: Synthesis of bioactive heterocycles. Green Chem. Synth. Bioact. Heterocycles 1–412 (2014) doi:10.1007/978-81-322-1850-0.
dc.relationHardacre, C., Holbrey, J. D., Nieuwenhuyzen, M. & Youngs, T. G. A. Structure and solvation in ionic liquids. Acc. Chem. Res. 40, 1146–1155 (2007).
dc.relationKumar, A. & Venkatesu, P. The stability of insulin in the presence of short alkyl chain imidazoliumbased ionic liquids. RSC Adv. 4, 4487–4499 (2014).
dc.relationMahkam, M., Hosseinzadeh, F. & Galehassadi, M. Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery. J. Biomater. Nanobiotechnol. 03, 391–395 (2012).
dc.relationAraki, S., Wakabayashi, R., Moniruzzaman, M., Kamiya, N. & Goto, M. Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. Medchemcomm 6, 2124–2128 (2015).
dc.relationLin, X., Su, Z., Yang, Y. & Zhang, S. The potential of ionic liquids in biopharmaceutical engineering. Chinese J. Chem. Eng. 30, 236–243 (2021).
dc.relationFlieger, J. & Flieger, M. Ionic liquids toxicity—benefits and threats. International Journal of Molecular Sciences vol. 21 1–41 (2020).
dc.relationRoma-Rodrigues, C. et al. Synthesis of new hetero-arylidene-9(10H)-anthrone derivatives and their biological evaluation. Bioorg. Chem. 99, 103849 (2020).
dc.relationMiskiewicz, A., Ceranowicz, P., Szymczak, M., Bartuś, K. & Kowalczyk, P. The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by Klebsiella Pneumoniae new delhi strain, Acinetobacter Baumannii and Enterococcus species. Int. J. Mol. Sci. 19, (2018).
dc.relationWang, D. et al. Anti-tumor activity and cytotoxicity in vitro of novel 4,5-dialkylimidazolium surfactants. Biochem. Biophys. Res. Commun. 467, 1033–1038 (2015).
dc.relationGuncheva, M. et al. Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity. Int. J. Biol. Macromol. 82, 798–805 (2016).
dc.relationUddin, M., Basak, D., Hopefl, R. & Minofar, B. Potential application of ionic liquids in pharmaceutical dosage forms for small molecule drug and vaccine delivery system. J. Pharm. Pharm. Sci. 23, 158–176 (2020).
dc.relationThuy Pham, T. P., Cho, C. W. & Yun, Y. S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 44, 352–372 (2010).
dc.relationDias, A. R. et al. The Anticancer Potential of Ionic Liquids. ChemMedChem 120, 342–348 (2017).
dc.relationThuy Pham, T. P., Cho, C. W. & Yun, Y. S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 44, 352–372 (2010).
dc.relationKumar, V. & Malhotra, S. V. Antitumor activity of ionic liquids on human tumor cell lines. ACS Symp. Ser. 1038, 91–102 (2010)
dc.relationKumar, A. In Vitro Cytotoxicities of Ionic Liquids: Effect of Cation Rings, Functional Groups, and Anions. Far East. Entomol. 165, 16 (2008).
dc.relationStasiewicz, M. et al. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol. Environ. Saf. 71, 157–165 (2008).
dc.relationStolte, S. et al. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 9, 1170–1179 (2007).
dc.relationPeric, B., Sierra, J., Martí, E., Cruañas, R. & Garau, M. A. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicol. Environ. Saf. 115, 257–262 (2015).
dc.relationMalhotra, S. V., Kumar, V., Velez, C. & Zayas, B. Imidazolium-derived ionic salts induce inhibition of cancerous cell growth through apoptosis. Medchemcomm 5, 1404–1409 (2014).
dc.relationMalhotra, S. V. & Kumar, V. A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Bioorganic Med. Chem. Lett. 20, 581–585 (2010).
dc.relationGamini, G. Sal de amonio cuaternario - Chemistry LibreTexts. https://chem.libretexts.org/Ancillary_Materials/Reference/Organic_Chemistry_Glossary/Quaternary_ Ammonium_Salt.
dc.relationWeston, C. W., Papcun, J. R. & Dery, M. Ammonium Compounds. Kirk-Othmer Encycl. Chem. Technol. (2003) doi:10.1002/0471238961.0113131523051920.A01.PUB2.
dc.relationLonza, L. Antimicrobial Active Ingredients for Use in Global Disinfectant Formulation. https://microbialmanagement.arxada.com/- /media/CoCo/hygiene/Antimicrobial_Actives_For_Global_Use_TDS.pdf (2017).
dc.relationTrimethyloctylammonium chloride ≥97.0% (AT) | 10108-86-8. https://www.sigmaaldrich.com/CO/es/product/aldrich/75094?gclid=Cj0KCQjwNaJBhDsARIsAAja6dO5YHjjD9GDCM_NDMYwBO8WgwQHob6JlzxZIeo9UKlYR4j8DrC3jMaAqBcEALw_wcB.
dc.relationBureš, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top. Curr. Chem. 377, 1–21 (2019).
dc.relationFletcher, J. H., Dermer, O. C. & Fox, R. B. Nomenclature of Organic Compounds. vol. 126 (AMERICAN CHEMICAL SOCIETY, 1974).
dc.relationGerba, C. P. Quaternary ammonium biocides: Efficacy in application. Applied and Environmental Microbiology vol. 81 464–469 (2015).
dc.relationRE Dixon, R. K. D. M. Aqueous quaternary ammonium antiseptics and disinfectants: use and misuse. JJ Am Med Assoc 236, 2415–2417 (1976).
dc.relationP Zhu, G. S. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93, 1037–1041 (2004).
dc.relationLi, Q., Li, Q., Tan, W., Zhang, J. & Guo, Z. Phenolic-containing chitosan quaternary ammonium derivatives and their significantly enhanced antioxidant and antitumor properties. Carbohydr. Res. 498, 108169 (2020).
dc.relationMaldonado Garcia, H. J., Guzmán Lezama, E. G., Márquez Cabezas, S., Tupayachi, A. & Joaquina, A. Estudio De Sapogeninas Esteroidales De Especies Peruanas Del Género Dioscorea. Rev. la Soc. Química del Perú 78, 208–218 (2012).
dc.relationSkrzypczak, N. et al. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J. Enzyme Inhib. Med. Chem. 36, 1898–1904 (2021).
dc.relationCarvajal, C. Especies reactivas del oxígeno: formación, funcion y estrés oxidativo. Med. Leg. Costa Rica 36, 91–100 (2019).
dc.relationSchmidt, H. H. H. W. et al. Antioxidants in Translational Medicine. Antioxidants Redox Signal. 23, 1130–1143 (2015)
dc.relationDi Meo, S., Reed, T. T., Venditti, P. & Victor, V. M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 1245049 (2016).
dc.relationOrtuño-Sahagún, D., Pallàs, M. & Rojas-Mayorquín, A. E. Oxidative Stress in Aging: Advances in Proteomic Approaches. Oxid. Med. Cell. Longev. 2014, 573208 (2014).
dc.relationNavarro-Yepes, J. et al. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival. Antioxidants \& Redox Signal. 21, 66–85 (2014).
dc.relationXia, X. et al. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 166, 108774 (2021).
dc.relationSethi, G. et al. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients 10, (2018).
dc.relationWang, S.-L. et al. Diosgenin-3-O-α-l-Rhamnopyranosyl-(1→4)-β-d-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT15 cells via mitochondria-controlled apoptotic pathway. J. Asian Nat. Prod. Res. 6, 115–125 (2004).
dc.relationLópez-Muñoz, M. et al. Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Med. Chem. Res. 28, 300–319 (2019).
dc.relationJorge, P. M. & Alejandro, E. Apoptosis, mecanismo de acción. Rev. ciencias médicas La Habana (En línea) 18, (2012)
dc.relationWikinski, W. De et al. Instituto de Fisiopatología y Bioquímica Clínica - INFIBIOC de la Universidad de Buenos Aires. Acta bioquímica clínica Latinoam. 44, 385–433 (2010).
dc.relationReap, E. A. et al. bcl-2 transgenic Lpr mice show profound enhancement of lymphadenopathy. J. Immunol. 155, 5455–5462 (1995).
dc.relationTartas, N. E., Foncuberta, M. C. & Sanchez Avalos, J. C. Tratamiento de las neoplasias hematologicas en el embarazo. Medicina (B. Aires). 67, 729–736 (2007).
dc.relationMuñoz Cendales, D. R. & Cuca Suárez, L. E. Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Rev. Colomb. Cancerol. 20, 124–134 (2016).
dc.relationYin, H. et al. Diosgenin Derivatives as Potential Antitumor Agents: Synthesis, Cytotoxicity, and Mechanism of Action. J. Nat. Prod. 84, 616–629 (2021).
dc.relationDziegielewska, B., Brautigan, D. L., Larner, J. M. & Dziegielewski, J. T-Type Ca2+ Channel Inhibition Induces p53-Dependent Cell Growth Arrest and Apoptosis through Activation of p38-MAPK in Colon Cancer Cells. Mol. Cancer Res. 12, 348–358 (2014)
dc.relationJin, X. et al. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol. Ther. 17, 566–576 (2016).
dc.relationHsieh, S.-C. et al. α-Mangostin induces mitochondrial dependent apoptosis in human hepatoma SK- Hep-1 cells through inhibition of p38 MAPK pathway. Apoptosis 18, 1548–1560 (2013).
dc.relationKoul, H. K., Pal, M. & Koul, S. Role of p38 MAP Kinase Signal Transduction in Solid Tumors. Genes Cancer 4, 342–359 (2013).
dc.relationLiu, H., He, J. & Yang, J. Tumor cell p38 MAPK: A trigger of cancer bone osteolysis. Cancer cell Microenviron. 2, (2015).
dc.relationKim, H.-G., Shi, C., Bode, A. M. & Dong, Z. p38α MAPK is required for arsenic-induced cell transformation. Mol. Carcinog. 55, 910–917 (2016).
dc.relationPlotnikov, A., Zehorai, E., Procaccia, S. & Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 1813, 1619–1633 (2011).
dc.relationTsuchiya, T. et al. Apoptosis induction by p38 MAPK inhibitor in human colon cancer cells. Hepatogastroenterology. 55, 930–935 (2008).
dc.relationFu, Y., O’Connor, L. M., Shepherd, T. G. & Nachtigal, M. W. The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor beta-induced Smad signaling in human ovarian cancer cells. Biochem. Biophys. Res. Commun. 310, 391–397 (2003).
dc.relationFurukawa, T. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer. Front. Oncol. 5, 23 (2015).
dc.relationDolado, I. et al. p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11, 191–205 (2007).
dc.relationPorras, A. & Guerrero, C. Role of p38α in apoptosis: implication in cancer development and therapy. Atlas Genet. Cytogenet. Oncol. Haematol. (2011) doi:10.4267/2042/44993.
dc.relationUniversidad de Salamanca. La Hsp90: una Chaperona molecular especializada. vol. 11 18477 http://proteinasestructurafuncion.usal.es/moleculas/hsp90/index.html (2011).
dc.relationOrtiz, L. Participación de la proteína de choque térmico 90 en la infección por el calicivirus felino. (Centro de investigaciones y de estudios avanzados del instituto politécnico nacional, 2015).
dc.relationAhmed, T. A. & Aljaeid, B. M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 10, 483–507 (2016).
dc.relationFabiano, A., Beconcini, D., Migone, C., Piras, A. M. & Zambito, Y. Quaternary Ammonium Chitosans: The Importance of the Positive Fixed Charge of the Drug Delivery Systems. Int. J. Mol. Sci. 21, (2020).
dc.relationLi, Q., Tan, W., Zhang, C., Gu, G. & Guo, Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int. J. Biol. Macromol. 91, 623–629 (2016).
dc.relationJesus, M., Martins, A., Gallardo, E. & Silvestre, S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J. Anal. Methods Chem. 2016, (2016).
dc.relationMendoza-lara, D. F., Berenice, G., Vela, S. & Chama-Martinez, yair E. El potencial de la diosgenina en el área médica. Rev. RD-icuap 6, 50–62 (2020)
dc.relationPorras, A. & Marzo, I. Apoptosis: una forma controlada de muerte celular. SEBBM Divulg. 1–3 (2010).
dc.relationDeboer, C., Meulman, P. A., Wnuk, R. J. & Peterson, D. H. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo). 23, 442–447 (1970).
dc.relationHuryn, D. M. & Wipf, P. Chapter 3 - Natural Product Chemistry and Cancer Drug Discovery. in (ed. Neidle, S. B. T.-C. D. D. and D. (Second E.) 91–120 (Academic Press, 2014). doi:https://doi.org/10.1016/B978-0-12-396521-9.00003-6.
dc.relationGrenert, J. P. et al. The Amino-terminal Domain of Heat Shock Protein 90 (hsp90) That Binds Geldanamycin Is an ATP/ADP Switch Domain That Regulates hsp90 Conformation*. J. Biol. Chem. 272, 23843–23850 (1997).
dc.relationStebbins, C. E. et al. Crystal Structure of an Hsp90–Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent. Cell 89, 239–250 (1997).
dc.relationDuerfeldt, A. S. & Blagg, B. S. J. Hsp90 inhibition: Elimination of shock and stress. Bioorg. Med. Chem. Lett. 20, 4983–4987 (2010).
dc.relationTaldone, T., Sun, W. & Chiosis, G. Discovery and development of heat shock protein 90 inhibitors. Bioorg. Med. Chem. 17, 2225–2235 (2009).
dc.relationSharp, S., Jones, K. & Workman, P. Chapter 9 - Exploiting Cancer Dependence on Molecular Chaperones: HSP90 Inhibitors Past, Present, and Future. in Cancer Drug Design and Discovery (Second Edition) (ed. Neidle, S.) 239–274 (Academic Press, 2014). doi:https://doi.org/10.1016/B978- 0-12-396521-9.00009-7
dc.relationMira, M., Monsalve, Á., Revuelta, D. & San jose, Ó. La Hsp90: una Chaperona molecular especializada. http://proteinasestructurafuncion.usal.es/moleculas/hsp90/index.html.
dc.relationGonzalez-Pastor, R. et al. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater. (2021) doi:https://doi.org/10.1016/j.actbio.2021.07.047.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSales de amonio cuaternario
dc.subjectSAR
dc.subjectEstudios de relación estructura actividad
dc.subjectLíquidos iónicos de imidazolio
dc.subjectPaclitaxel
dc.subjectTaxol
dc.subjectQuímica
dc.subjectAnálisis químico
dc.titleUn abordaje conceptual y metodológico de la correlación de la estructura química y actividad biológica de tres compuestos anticancerígenos y algunos derivados
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución