dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorRafikov, Marat
dc.creatorBalthazar, José Manoel
dc.creatorTusset, Angelo Marcelo
dc.date2013-09-30T18:50:33Z
dc.date2014-05-20T14:16:23Z
dc.date2016-10-25T17:39:29Z
dc.date2013-09-30T18:50:33Z
dc.date2014-05-20T14:16:23Z
dc.date2016-10-25T17:39:29Z
dc.date2008-10-01
dc.date.accessioned2017-04-05T22:21:44Z
dc.date.available2017-04-05T22:21:44Z
dc.identifierJournal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 30, n. 4, p. 279-284, 2008.
dc.identifier1678-5878
dc.identifierhttp://hdl.handle.net/11449/24936
dc.identifierhttp://acervodigital.unesp.br/handle/11449/24936
dc.identifier10.1590/S1678-58782008000400002
dc.identifierS1678-58782008000400002
dc.identifierWOS:000265311000002
dc.identifierhttp://dx.doi.org/10.1590/S1678-58782008000400002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/869892
dc.descriptionThis paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherAbcm Brazilian Soc Mechanical Sciences & Engineering
dc.relationJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectoptimal control
dc.subjectnonlinear system
dc.subjectduffing oscillator
dc.subjectactive suspension system
dc.subjectchaotic attractor
dc.titleAn Optimal Linear Control Design for Nonlinear Systems
dc.typeOtro


Este ítem pertenece a la siguiente institución