dc.contributorNaranjo, Andrés
dc.contributorGeología (Categoría C)
dc.contributorDavis, Brett
dc.creatorArango Trujillo, Marcelo
dc.date2023-05-24T22:01:09Z
dc.date2023-05-24T22:01:09Z
dc.date2023-05-23
dc.date.accessioned2023-09-06T18:31:46Z
dc.date.available2023-09-06T18:31:46Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19448
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8698762
dc.descriptionIlustraciones, mapas, fotos
dc.descriptionspa:El desarrollo de los sistemas minerales hidrotermales está fuertemente influenciado por la deformación dentro de los regímenes frágiles y dúctiles. La localización de la mineralización se rige por los procesos de mejora de la permeabilidad y la arquitectura estructural que involucra zonas de daño por fallas, intersecciones de fallas, orientaciones y magnitudes de campos de esfuerzos, presión de fluidos y propiedades de la roca huésped. La generación de permeabilidad constante favorece múltiples inyecciones de flujo de fluidos y el enriquecimiento de los sistemas mineralizados, y es particularmente eficiente en canales de fluido relacionados con fallas de penetrativas y profundas. El trabajo presentado aquí tuvo como objetivo definir el marco estructural y geológico del depósito de oro Buriticá en Colombia, a través de la evaluación de los controles de ley de oro, la distribución de las unidades de roca huésped y los elementos guía, el desarrollo de vetas y alteraciones, y las relaciones geométricas y de sobreimpresión de las vetas con estructuras no mineralizadas y eventos intrusivos. La revisión de conjuntos de datos geoquímicos a escala de depósito ha sido esencial para resolver la distribución 3D de elementos y ensamblajes de alteración. En combinación con la documentación de las estructuras de la roca huésped y las relaciones de sobreimpresión, esto ha sido un elemento crítico para establecer la red de permeabilidad controlada estructuralmente responsable del desarrollo del sistema hidrotermal de Buriticá. Finalmente, el trabajo tuvo como objetivo determinar la historia geológica a escala del depósito y brindar orientación sobre las implicaciones para los procedimientos de exploración. El enfoque se logró mediante el uso de técnicas que incluyeron logueo y muestreo, mapeo superficial y subterráneo, petrografía de rocas huésped y vetas, clasificaciones litogeoquímicas, DRX, geocronología y modelado 3-D. El depósito de oro Buriticá es un sistema mineral-hidrotermal controlado por fallas, delimitado por fallas penetrativas de larga duración que proporcionaron canales permeables para el flujo de fluidos y múltiples etapas de relleno de vetas. A escala de yacimiento y depósito, las estructuras mineralizadas se desarrollaron como vetas de extensión albergadas por fallas con deformación posterior. El halo de alteración sericita controla la distribución de leyes de oro en los sistemas mineralizados y rocas hospedantes de Yaraguá y Veta Sur, sobreimprimiendo los conjuntos de alteración hidrotermal típicos y tempranos de un depósito de pórfido de cobre. La evaluación litogeoquímica ha identificado la afinidad calco-alcalina del Complejo Intrusivo Buriticá (BIC), así como la relación directa entre la ley de Au y la intensidad de alteración sericita. Los resultados geocronológicos ubican al BIC dentro del Cinturón del Cauca Medio del Mioceno, reportando una edad U-Pb en circón de 7.7 ± 0.1 Ma. La acomodación de la deformación en las zonas dañadas por fallas, las intersecciones de estructuras mineralizadas y no mineralizadas y la formación de zonas de dilatación tales como jogs y vetas de extensión de segundo orden fueron clave para el desarrollo de altos volúmenes de ley de Au. Palabras clave: (Buriticá, permeabilidad, oro, control de fallas, Cinturón del Cauca Medio, Colombia).
dc.descriptioneng:The development of hydrothermal ore systems is strongly influenced by deformation within brittle and ductile regimes. Localization of mineralization is ruled by permeability enhancement processes and structural architecture that involves fault damage zones, fault intersections, stress field orientations and magnitudes, fluid pressure, and host-rock properties. Constant permeability generation favors multiple fluid flux injections and enrichment of the mineralized systems, and is particularly efficient in deep penetrative fault-related pathways. The work presented here aimed to define the structural and geological framework of the Buriticá gold deposit in Colombia, through assessment of gold grade controls, distribution of host-rock units and gold pathfinders, vein and alteration development, and the geometric and overprinting relationships of veins with non-mineralized structures and intrusive events. The review of deposit-scale geochemical datasets has been essential to resolving the 3D distribution of elements and alteration assemblages. In combination with documentation of host-rock structures and overprinting relationships, this has been a critical element to establishing the structurally-controlled permeability network responsible for development of the Buriticá hydrothermal system. Finally, the work aimed to determine the deposit-scale geological history and provide guidance on the implications for exploration procedures. The approach has been accomplished by using techniques that included logging and sampling, surface and underground mapping, petrography of host-rocks and veins, lithogeochemistry classifications, XRD, geochronology and 3-D modelling. The Buriticá gold deposit is a fault-controlled hydrothermal ore system, bounded by long-lived penetrative faults that provided permeable channels for fluid flux and multiple vein-fill stages. At the orebody- and deposit-scale, mineralized structures developed as fault-hosted extension veins with subsequent shearing. The sericite halo alteration assemblage controls the Au grade distribution in Yaraguá and Veta Sur mineralized systems and host-rocks, overprinting early-formed and typical hydrothermal alteration assemblages of a porphyry Cu deposit. Lithogeochemical assessment has identified the calc-alkaline affinity of the Buriticá Intrusive Complex (BIC), as well as the direct relationship between Au grade and sericite alteration intensity. Geochronology results place the BIC within the Miocene-aged Middle Cauca belt, reporting an U-Pb age on zircon of 7.7 ± 0.1 Ma. The accommodation of strain in fault damage zones, mineralized and non-mineralized structure intersections, and formation of dilation zones such jogs and second-order extension veins, were key for development of high Au grade volumes. Keywords: (Buriticá, permeability, gold, fault control, Middle Cauca belt, Colombia).
dc.description1. Introduction / 1.1. Objectives / 1.1.1. General / 1.1.2. Specific / 2. Geological Framework / 2.1. Regional Geology-Tectonic Evolution / 2.2. Local Geology / 2.2.1 Composition / 2.2.2 Alteration / 2.2.3 Mineralization / 2.3. Structural geology / 3. Theoretical Framework / 3.1. Porphyry deposits / 3.1.1 Hydrothermal alteration / 3.1.2 Veins, Crosscutting relationships and Deformation / 3.1.3 Linkage between Porphyry and Epithermal deposits / 3.2. Permeability and fluid flux in Fault-Controlled Hydrothermal Systems / 3.2.1 Failure Processes and Fracture-Controlled Permeability Enhancement / 3.2.2 Dynamics of Permeability Enhancement and Fluid Flow in Overpressured, High Fluid Flux Regimes: Injection-Driven Failure Sequences / 3.2.3 Geometric and Kinematic Controls on Location, Geometry, and Styles of FractureRelated Permeability Enhancement in Faults / 4. Methodology / 4.1. Logging and sampling / 4.2. Surface-underground mapping / 4.3. Petrography / 4.4. Lithogeochemistry / 4.5. X-ray diffraction / 4.6. Geochronology / 4.7. 3-D modeling / 5. Results / 5.1. Structures / 5.2. Petrography / 5.3. Lithogeochemistry / 5.3.1 Hydrothermal alteration / 5.4. X-Ray Diffraction / 5.5. Geochronology / 6. Discussion / 6.1. Permeability development at the deposits-scale - Roles of faults in the development of permeability / 6.2. Controls on high-grade accumulation zones / 6.3. Fault architecture and igneous intrusion relationships / 6.4. Ongoing exploration implications / 6.5. Litho-geochemistry insights / 7. Conclusions / 8. References / Appendix / Appendix 1. Petrography samples, locations and descriptions. / Appendix 2. XRD data / x Appendix 3. Geochronological data / Appendix 4. Mapping / Appendix 5. Oriented drillcore data
dc.descriptionMaestría
dc.descriptionMagister en Ciencias de la Tierra
dc.descriptionGeología Económica
dc.descriptionGeología Estructural
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherMaestría en Ciencias de la Tierra
dc.relationAerne, U., & Kretz, P. (2014). Magmatic-Hydrothermal evolution of the Buriticá carbonate base metal deposit, Antioquia department, Colombia. Master thesis, Swiss Federal Institute of Technology (ETHZ)., 52– 56.
dc.relationÁlvarez, A. J. (1983). Geología de la cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides mesocenozoicos. Boletín Geológico
dc.relationÁlvarez, E., & Gonzáles, H. (1978). Geología y geoquímica del Cuadrángulo I–7 (Urrao). Mapa escala 1:100.000. Ingeominas, Informe 1761.
dc.relationÁlvarez, J., Rico, H., Vásquez, H., Hall, R., & Blade, L. (1975). Geological map of the Yarumal Quadrangle (H-8) and part of the Ituango Quadrangle (H-7), Escala 1:100.000. INGEOMINAS.
dc.relationArancibia, O. N., & Clark, A. H. (1996). Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia. Economic Geology, 91, 402–438.
dc.relationArrubla-Arango, F., & Silva-Sánchez, S. (2021). Geology of the Frontino-Morrogacho Gold Mining District and metallogeny of the El Cerro Igneous Complex. Boletín Geológico, 48(1), 7–47.
dc.relationBateman, A. M. (1958). Economic mineral deposits, 2nd ed.: New York, Wiley. 916.
dc.relationBattles, D. A. (1995). Arc-related sodic hydrothermal alteration in the western United States. Geology,, 23, 913–916.
dc.relationBlenkinsop, T. G. (2008). Relationships between faults, extension factures and. Journal of Structural Geology, 30, 622–632.
dc.relationCediel, F., Shaw, R. P., & Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block, The CircumGulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir 79, 815–848.
dc.relationCorbett, G. J., & Leach, T. M. (1998). Southwest Pacific gold-copper systems: Structure, alteration and mineralization. Economic Geology, 238.
dc.relationCowan, E. J. (2020). Deposit-scale structural architecture of the Sigma-Lamaque gold deposit, Canada— insights from a newly proposed 3D method for assessing structural controls from drill hole data. Mineralium Deposita, 55, 217–240.
dc.relationCox, S. F. (1995). Faulting processes at high fluid pressures: An example of fault-valve behavior from the Wattle Gully fault, Victoria, Australia. Journal of Geophysical Research, 100, 841–859
dc.relationCox, S. F. (2005). Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal environments. Economic Geology, 100th Anniversary Volume, 39–75.
dc.relationCox, S. F. (2016). Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid flux overpressured faulting regimes. Economic Geology, 111, 559–587.
dc.relationCox, S. F. (2020). The dynamics of permeability enhancement and fluid flow in overpressured, fracturecontrolled hydrothermal systems. Reviews in Economic Geology, 21, 25–82.
dc.relationCox, S. F., Braun, J., & Knackstedt, M. A. (2001). Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology, 14, 1–24.
dc.relationCox, S. F., Wall, V. J., Etheridge, M. A., & Potter, T. F. (1991). Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold depositsdeposits—examples from the Lachlan fold belt in central Victoria, Australia. Ore Geology Reviews, 6, 391–423.
dc.relationCurewitz, D., & Karson, J. A. (1997). Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research, 79, 1459–1468
dc.relationDilles, J. H. (1987). Petrology of the Yerington batholith, Nevada: Evidence for evolution of porphyry copper ore fluids. Economic Geology, 82, 1750–1789.
dc.relationDilles, J. H., & Einaudi, M. T. (1992). Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6–km vertical reconstruction. Economic Geology, 87, 1963– 2001.
dc.relationDilles, J. H., & Proffett, J. M. (1995). Metallogenesis of the Yerington batholith, Nevada. Arizona Geological Society Digest 20, 306–315.
dc.relationDilles, J. H., Einaudi, M. T., Proffett, J., & Barton, M. D. (2000a). Overview of the Yerington porphyry copper district: Magmatic to nonmagmatic sources of hydrothermal fluids: Their flow paths and alteration effects on rocks and Cu-Mo-Fe-Au ores. Society of Economic Geologists Guidebook Series, 32, 55– 66.
dc.relationEgo, F., Sébrier, M., & Yepes, H. (1995). Is the Cauca-Patia and Romeral Fault System left or rightlateral? 22, 33–36.
dc.relationEinaudi, M. T. (1977b). Environment of ore deposition at Cerro de Pasco, Peru. Economic Geology, 72, 893– 924.
dc.relationEinaudi, M. T. (1982a). Description of skarns associated with porphyry copper plutons, southwestern North America, in Titley, S.R. ed. Advances in geology of the porphyry copper deposits, southwestern North America. Tucson, University of Arizona Press, 139–183
dc.relationEinaudi, M. T., Hedenquist, J. W., & Inan, E. E. (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Society of Economic Geologists Special Publication, 285–313.
dc.relationEmmons, W. H. (1927). Relations of the disseminated copper ore in porphyry to igneous intrusives. American Institute of Mining and Metallurgical Engineers Transactions, 75, 797–815.
dc.relationEtayo-Serna, F., González, H., & Álvarez, E. (1980). Mid–Albian ammonites from northern Western Cordillera, Colombia, S.A. Geología Norandina, 2, 25–30.
dc.relationFaulds, J. E., & Hinze, N. H. (2015). Favorable tectonic settings of geothermal systems in the Great Basin region, western USA: Proxies for discovering blind geothermal systems. World Geothermal Congress, Melbourne, Australia, 1–6.
dc.relationFeininger, T., Barrero, D., & Castro, N. (1972). Geología de Antioquia y Caldas (subzona JIB). Ingeominas, Bol. Geol., 20(2), 173.
dc.relationFleming, A. W., Handley, G. A., Williams, K. L., Hills, A. L., & Corbett, G. J. (1986). The Porgera gold deposit, Papua New Guinea. Economic Geology, 81(3), 660–680.
dc.relationFournier, R. O. (1999). Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94, 1193–1211
dc.relationGarson, M. S., & Mitchell, A. H. (1981). Chapter 27 Precambrian Ore Deposits and Plate Tectonics. Developments in Precambrian Geology, 4, 689–731.
dc.relationGeoestudios-Ingeominas. (2005). Complementación geológica, geoquímica y geofísica de la parte occidental de las planchas 130 Santa Fé de Antioquia y 146 Medellín Occidental. Escala 1:100,000: INGEOMINAS. Informe técnino.
dc.relationGerya, T. V., Stern, R. J., Baes, M. S., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527, 221–225.
dc.relationGöbel, V., & Stibane, F. (1979). K/Ar hornblende ages of tonalite plutons, Cordillera Occidental, Colombia. Publicaciones Especiales Geología(19), 1–2.
dc.relationGonzáles, H., & Londoño, A. (1998). Edades K/Ar en algunos plutones del Graben del Cauca y norte de la Cordillera Occidental. Rev. Geol. Col, 117–131.
dc.relationGonzález, H., Restrepo, J. J., Toussaint, J. F., & Linares, E. (1976). Edad radiométrica K-Ar del Batolito de Sabanalarga. Publicación Especial de Geología, 8. Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad Ciencias de la Tierra, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín.
dc.relationGreene, A. R., Scoates, J., Weis, D., Katvala, E. C., Israel, S., & Nixon, G. T. (2010). The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau. Geosphere, 6, 47–73.
dc.relationGuiral-Vega, J. S., Rincón-Gamero, J. J., & Ordoñez-Carmona, O. (2015). Geología de la porción sur del Batolito de Sabanalarga. Implicaciones para la teoría de terrenos al occidente de Colombia. Boletín de Ciencias de la Tierra.
dc.relationGuiral-Vega, J. S., Rincon-Ramero, J. J., & Ordóñez-Carmona, O. (2015). Geology of the southern part of Sabanalarga Batholith: Implications for terrane theory in the west of Colombia. Boletin de Ciencias de la Tierra(38), 41–48.
dc.relationGustafson, L. B. (1978). Some major factors of porphyry copper genesis. Economic Geology, 73, 600–607.
dc.relationGustafson, L. B., & Hunt, J. P. (1975). The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5), 857–912.
dc.relationGustafson, L. B., & Quiroga, J. (1995). Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Economic Geology, 90, 2–16.
dc.relationHemley, J. J., & Hunt, J. P. (1992). Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geologic applications. Economic Geology, 87, 23–43.
dc.relationHill, D. P., & Prejean, S. (2005). Magmatic unrest beneath Mammoth Mountain, California. Journal of Volcanology and Geothermal Research, 146, 257–283.
dc.relationHouston, R. A. (2001). Geology and structural history of the Butte district, Montana. Unpublished M.S. thesis, Corvallis, Oregon State University, 45.
dc.relationJaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia Volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. LITHOS, 194–210. doi:https://doi.org/10.1016/j.lithos.2019.02.017
dc.relationJensen, E. P., & Barton, M. D. (2000). Gold deposits related to alkaline magmatism. Reviews in Economic Geology, 13, 279–314.
dc.relationKerr, A. C., & Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33, 269–272.
dc.relationKerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., & Saunders, A. D. (1997). The Caribbean-Colombian Cretaceous Igneous Province: The internal anatomy of an oceanic plateau. American Geophysical Union Books, 123–144.
dc.relationLawn, B. (1993). Fracture of brittle solids, 2nd ed. Cambridge University Press, 378.
dc.relationLeal-Mejia, H. (2011). Phanerozoic gold metallogeny in the colombian andes: a tectonic-magmatic approach. Anglogold Ashanti.
dc.relationLeal-Mejía, H., Shaw, R., & Melgarejo, J. C. (2019). Spatial-Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono-Magmatic Evolution of the Colombian Andes. Geology and Tectonics of Northwestern South America.
dc.relationLeckenby, R. J., Sanderson, D. J., & Lonergan, L. (2005). Estimating flow heterogeneity in natural fracture systems. Journal of Volcanology and Geothermal Research, 116–129.
dc.relationLeón, S., Cardona, A., Jaramillo, J. S., Zapata, S., & Avellaneda-Jiménez, D. S. (2019). Comment on “Origin of pre-Mesozoic xenocrystic zircons in Cretaceous sub-volcanic rocks of the northern Andes (Colombia): Paleogeographic implications for the region” by Cetina et al. (2019). Journal of South American Earth Sciences.
dc.relationLesage, G. (2011). Geochronology, Petrography, Geochemical Constraints and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia. Master thesis, University of Alberta, 75.
dc.relationLindsay, D. D., Zentilli, M., & Rojas de la Rivera, J. (1995). Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata porphyry copper deposit, northern Chile. International Geology Review, 37, 945–958.
dc.relationLowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65, 373–408.
dc.relationMarín-Cerón, M., Leal-Mejía, H., Bernet, M., & Mesa-García, J. (2019). Late Cenozoic to Modern-Day Volcanism in the Northern Andes: A Geochronological, Petrographical, and Geochemical Review. Geology and Tectonics of Northwestern South America, 603–648.
dc.relationMcCourt, W. J., Aspden, J. A., & Brook, M. (1984). New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. Journal of the Geological Society, 141, 831–845.
dc.relationMcGrath, A. G., & Davison, I. (1995). Damage zone geometry at fault tips. Journal of Structural Geology, 17, 1011–1024.
dc.relationMcInnes, B. I., Farley, K. A., Sillitoe, R. H., & Kohn, B. P. (1999). Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Economic Geology, 94, 937–947.
dc.relationMejía, M., & Salazar, G. (1989). Memoria explicativa de la Geología de la Plancha 114 (Dabeiba) y parte W de la 115 (Toledo). Escala 1:100.000. INGEOMINAS, 111.
dc.relationMeyer, C. (1981). Ore-forming processes in geologic history. Economic Geology, 75TH ANNIVERSARY VOLUME, 6-41.
dc.relationMeyer, C., & Hemley, J. J. (1967). Wall rock alteration, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits: New York, Holt, Rinehart, and Winston . 166–235
dc.relationMeyer, C., Shea, E. P., Goddard, C. C., Jr., & staff, a. (1968). Ore deposits at Butte, Montana, in Ridge, J.D., ed., Ore deposits of the United States, 1933–1967 (Graton-Sales Volume). New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, 2, 1373–1416.
dc.relationMoreno-Sanchez, M., & Pardo-Trujillo, A. (2003). Stratigraphical and Sedimentological Constraints on Western Colombia: Implications on the Evolution of the Caribbean Plate. AAPG Special Volumes, 891–924
dc.relationMunroe, S. M. (1995). The Porgera gold deposit, Papua New Guinea: The influence of structure and tectonic setting on hydrothermal fluid flow and mineralisation at a convergent margin. PACRIM ‘95 Conference, Australasian Institute of Mining and Metallurgy, Auckland, New Zealand, 413–416.
dc.relationNaney, M. T. (1983). Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283, 993–1033.
dc.relationNaranjo, A.; Horner, J.; Jahoda, R.; Diamond, L.; Castro, A.; Uribe, A.; Perez, C.; Paz, H.; Mejia, C.; Weil, J. (2017). La Colosa Au Porphyry Deposit, Colombia: Mineralization Styles, Structural Controls, and Age Constraints. Economic Geology, 113, 553–578.
dc.relationNguyen, P. T., Cox, S. F., Powell, C. M., & H. L. (1998). Fault-valve behaviour in optimally oriented shear zones at Revenge gold mine, Kambalda, Western Australia. Journal of Structural Geology, 20, 1625– 1640.
dc.relationNivia, A. (1996). The Bolivar mafic-ultramafic complex, SW Colombia: the base of an obducted oceanic plateau. Journal of South American Earth Sciences, 9(1-2), 59–68.
dc.relationNivia, A., & Gómez-Tapias, J. (2015). Consideraciones acerca del modelo geológico evolutivo del Occidente Colombiano (Colombia). Conference: X Congreso Colombiano de Geología.
dc.relationNivia, A., Gómez-Tapias, J., Jiménez-Mejía, D., & Mora-Penagos, M. (2005). Mapa Geológico de Colombia a escala 1:1 000 000 versión 2005. Conference: X Congreso Colombiano de Geología.
dc.relationOrdóñez-Carmona, O., & Pimentel, M. (2002). Rb–Sr and Sm–Nd isotopic study of the Puquıí complex, Colombian Andes. Journal of South American Earth Sciences, 15(2), 173–182.
dc.relationPeterson, E. C., & Mavrogenes, J. A. (2014). Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. The Geological Society of America, 42(5), 383–386.
dc.relationPindell, J. L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publications, 328, 1–55.
dc.relationRamsey, J. M. (2004). Hybrid fracture and the transition. Nature, 428, 63–65.
dc.relationReches, Z., & Lockner, D. A. (1994). Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research, 99, 18159–18173.
dc.relationRedmond, P. B., Einaudi, M. T., Inan, E. E., Landtwing, M. R., & Heinrich, C. A. (2004). Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32, 217–220.
dc.relationReid, R. R., & Caddey, S. W. (1975). Primary refraction control of ore shoots, with examples from Coeur d’Alene district, Idaho. Economic Geology, 70, 1050–1061.
dc.relationRestrepo, J. J., & Toussaint, J. F. (1987). Cuencas de traccion sinistrales en la falla de minas del Sistema CaucaRomeral, en las cercanias de Medellin, Colombia. 31.
dc.relationRestrepo, J. J., Ordóñez-Carmona, O., Marterns, U., & Correa-Martinez, A. M. (2009). Terrenos, complejos y provincias en la Cordillera Central de Colombia. Revista de Planeación y Desarrollo, 49–56.
dc.relationRichards, J. P. (1990). Petrology and geochemistry of alkalic intrusives at the Porgera gold deposit, Papua New Guinea. Journal of Geochemical Exploration, 35(1-5), 141–199.
dc.relationRichards, J. P. (1992). Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea. Economic Geology.
dc.relationRichards, J. P. (1992). Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea. Geology, 20(6), 547–550.
dc.relationRichards, J. P., Boyce, A. J., & Pringle, M. S. (2001). Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96, 271–305.
dc.relationRichards, J. P., Bray, C. J., Channer, D. M., & Spooner, E. T. (1997). Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita, 32, 119–132.
dc.relationRichards, J. P., McCulloch, M. T., W., C. B., & Robert, K. (1991). Sources of metals in the Porgera gold deposit, Papua New Guinea: evidence from alteration, isotope, and noble metal geochemistry. Geochimica et Cosmochimica Acta, 55(2), 565–580
dc.relationRobert, F., & Poulsen, K. H. (2001). Structural controls on veins in gold. Reviews in Economic Geology, 14, 111–156.
dc.relationRodriguez, C., & Warden, A. J. (1993). Overview of some Colombian gold deposits and their development potential. Mineral. Deposita 28, 47–57.
dc.relationRodríguez, G., & Arango, M. (2013). Barroso Formation: a Tholeiitic volcanic arc and San Jose de Urama diabases: a T-MORB Type accretionary prism in the northern segment of Western Cordillera of Colombia. Boletin, 33, 17–38.
dc.relationRodríguez, G., & Zapata, G. (2012). Basalto de El Botón, volcanismo mioceno de afinidad shoshonítica en el noreste de la Cordillera Occidental de Colombia.
dc.relationRodríguez, G., & Zapata, G. (2012). Características del plutonismo Mioceno superior en el segmento Norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente Colombiano. Boletin de Ciencias de La Tierra, 31, 522.
dc.relationRodríguez, G., Zapata, G., & Gómez, J. F. (2012). Plancha Geológica 114, Dabeiba ,Antioquia. Servicio geológico colombiano.
dc.relationRodríguez–García, G., Correa–Martínez, A. M., Zapata–García, G., Arango–Mejía, M. I., Obando–Erazo, G., Zapata–Villada, J. P., & Bermúdez, J. G. (2020). Diverse Jurassic Magmatic Arcs of the Colombian Andes: Constraints from Petrography, Geochronology, and Geochemistry. The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 117– 170.
dc.relationRodríguez–García, G., Correa–Martínez, A., Zapata–García, G., Arango–Mejía, M. I., Obando–Erazo, G., Zapata–Villada, J. P., & Bermúdez, J. G. (2020). Diverse Jurassic Magmatic Arcs of the Colombian Andes: Constraints from Petrography, Geochronology, and Geochemistry. he Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 117– 170.
dc.relationRonacher, E., Richards, J. P., & Johnston, M. D. (2000). Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita, 35, 683–688
dc.relationRonacher, E., Richards, J. P., Reed, M. H., Bray, C. J., Spooner, E. T., & Adams, P. D. (2004). Characteristics and evolution of the hydrothermal fluid in the North zone high-grade area, Porgera gold deposit, Papua New Guinea. Economic Geology, 99(5), 843–867.
dc.relationRowland, J. V., & Simmons, S. F. (2012). Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo volcanic zone, New Zealand: Implications for the formation of epithermal vein deposits. Economic Geology, 107, 427–457.
dc.relationRusk, B. G. (2002). Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30, 727–730.
dc.relationSeedorff, E., & Einaudi, M. T. (2004a). Henderson porphyry molybdenum system, Colorado I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Economic Geology, 99, 3–37.
dc.relationSeedorff, E., Dilles, J., & Proffett, J. (2005). Porphyry Deposits: Characteristics and Origin of Hypogene Features. Economic Geology, 100th Anniversary Volume, 251–298.
dc.relationSEG. (2020). Applied structural geology of ore-forming hydrothermal systems. Reviews in Economic Geology, 21, 25–82.
dc.relationSelby, D., Nesbitt, B. E., Muehlenbachs, K., & Prochaska, W. (2000). Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia. Economic Geology, 95, 183–202.
dc.relationShapiro, S. A. (2015). Fluid-induced seismicity. Cambridge, Cambridge University, 276.
dc.relationShelly, D. R., Hill, D. P., Massin, F., Farrell, J., Smith, R. B., & Taira, T. (2013a). A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. Journal of Geophysical Research, 118, 4872–4886.
dc.relationShelly, D. R., Moran, S. C., & Thelen, W. A. (2013b). Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington, earthquake swarm. Geophysical Research Letters, 40, 1506–1512.
dc.relationShelly, D. R., Taira, T., Prejean, S. G., Hill, D. P., & Dreger, D. S. (2015). Fluid faulting interactions: Fracture mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophysical Research Letters, 42, 5803–5812.
dc.relationSheppard, S. M., Nielsen, R. L., & Taylor, H. P. (1971). Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Economic Geology, 66, 515–542.
dc.relationSibson, R. H. (1981). Fluid flow accompanying faulting: Field evidence and models, in Simpson, D.W., and Richards, P.G, eds., Earthquake prediction: An international review. Maurice Ewing series, 4, 593– 603.
dc.relationSibson, R. H. (1989). Earthquake faulting as a structural process. Journal of Structural, 11, 1–14.
dc.relationSibson, R. H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18, 1031–1042.
dc.relationSibson, R. H. (2001). Seismogenic framework for ore deposition. Reviews in Economic Geology, 14, 25–50
dc.relationSibson, R. H. (2003). Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93, 1169–1178.
dc.relationSibson, R. H. (2019). Arterial faults and their role in mineralizing systems. Geoscience Frontiers, 10(6), 2093– 2100. doi://doi.org/10.1016/j.gsf.2019.01.007.
dc.relationSillitoe, R. H. (1972). A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67, 184–197.
dc.relationSillitoe, R. H. (1976). Andean mineralization: A model for the metallogeny of convergent plate margins. Geological Association of Canada Special Paper 14, 59–100.
dc.relationSillitoe, R. H. (1985). Ore-related breccias in volcanoplutonic arcs. Economic Geology, 80, 1467–1514.
dc.relationSillitoe, R. H. (1994). Erosion and collapse of volcanoes: Causes of telescoping in intrusion-centered ore deposits. Geology, 22, 945–948.
dc.relationSillitoe, R. H. (2000). Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. Reviews in Economic Geology, 13, 315–345.
dc.relationSillitoe, R. H. (2008). Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings, and metallogenic considerations. Economic Geology and the Bulletin of the Society of Economic Geologists, 103, 663–687.
dc.relationSillitoe, R. H. (2010). Porphyry Copper Systems. Economic Geology(105), 3–41. doi:http://dx.doi.org/10.2113/gsecongeo.105.1.3
dc.relationSillitoe, R. H., & Hedenquist, J. W. (2003). Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Socitety of Economic Geology.
dc.relationSillitoe, R. H., Jaramillo, L., Damon, P. E., Shafiqullah, M., & Escovar, R. (1982). Setting, characteristics, and age of the Andean porphyry copper belt in Colombia. Economic Geology, 1837–1850.
dc.relationSkewes, M. A. (1996). Late Miocene mineralized breccias in the Andes of central Chile: Sr- and Nd-isotopic evidence for multiple magmatic sources. Society of Economic Geologists Special Publication 5, 33– 41.
dc.relationSpikings, R., Cochrane, R., Villagomez, D., Lelij, R. V., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 95–139.
dc.relationStaude, J. -M., & Barton, M. D. (2001). Jurassic to Holocene tectonics magmatism, and metallogeny of northwestern Mexico. Geological Society of America Bulletin, 113, 1357–1374.
dc.relationSterling, M. W., Wesnousky, S. G., & Shimazaki, K. (1996). Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults. Geophysical Journal International, 124, 833–868.
dc.relationStoffregen, R. E. (1987). Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, 1575–1591.
dc.relationSuppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684–721
dc.relationTaboada, A.; Rivera, L. A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787–813.
dc.relationTitley, S. R. (1966). Preface, in Titley, S.R., and Hicks, C.L., eds., Geology of the porphyry copper deposits, southwestern North America. Tucson, University of Arizona Press, ix-x.
dc.relationTitley, S. R. (1982b). The style and progress of mineralization and alteration in porphyry systems, in Titley, S.R., ed. Advances in geology of the porphyry. Tucson, Arizona, University of Arizona Press, 93–116.
dc.relationTitley, S. R. (1997). 1997 Jackling Lecture: Porphyry copper geology: A late century. Mining Engineering, 49, 57–63.
dc.relationTomlinson, A. J., & Blanco, N. (1997a). Structural evolution and displacement history of the West fault system, Precordillera, Chile: Part 1 Synmineral history. Congreso Geológico Chileno, 8th, Antofagasta, Actas, 3, 1873–1877
dc.relationTomlinson, A. J., Dilles, J. H., & Maksaev, V. (2001). Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile—a discussion. Economic Geology, 96, 1307–1309.
dc.relationToussaint, J. F., & Restrepo, J. J. (1988). Terranes and Continental Accretion in the Colombian Andes. 11, 189– 193.
dc.relationToussaint, J. F., & Restrepo, J. J. (1990). Cronología de las acreciones de terrenos alóctonos en los Andes colombianos. Universidad Nacional de Colombia, Facultad de Ciencias.
dc.relationToussaint, J. F., & Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Ande. Earth Evolution Sciences, 61–100.
dc.relationUlrich, T., & Heinrich, C. A. (2001). Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 96, 1719–1742.
dc.relationVinasco, C. (2019). The Romeral Shear Zone. Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham.
dc.relationVinasco, C., & Cordani, U. (2012). Reactivation episodes of the Romeral fault system in the Northwestern part of Central Andes, Colombia, through 39Ar-40Ar and K-Ar results. Boletín de Ciencias de la Tierra.
dc.relationVinasco, C., Cordani, U., & Vasconcelos, P. (2001). 40Ar/39Ar dates in the Central Cordillera of Colombia: Evidence for an upper triassic regional tecnomagmatic event. South American symposium on isotope geology.
dc.relationWalsh, J. J., Torremans, K., Güven, J., Kyne, R., Conneally, J., & Bonson, C. (2018). Fault-controlled fluid flow within extensional basins and its implications for sedimentary rock-hosted mineral deposits. Society of Economic Geologists, Inc. SEG Special Publications(21), 237–269. doi:10.5382/sp.21.11; 33 p.
dc.relationWalsh, J. J., Watterson, J., Bailey, W. R., & Childs, C. (1999). Fault relays, bends, and branch lines. Journal of Structural Geology, 21, 1019–1026.
dc.relationWeber, M., Cardona, A., Valencia, V., & Altenberger, U. (2011). Geochemistry and Geochronology of the Guajira Eclogites, northern Colombia: evidence of a metamorphosed primitive Cretaceous Caribbean Island-arc. Geologica Acta: an international earth science journal.
dc.relationWeber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. 62, 257–274.
dc.relationWesnousky, S. G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335, 340–342.
dc.relationWhite, D., Musacchio, G., Helmstaedt, H., Harrap, R., Thurston, P., Velden, A. v., & Hall, K. (2003). Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province. Geology, 311, 997–1000.
dc.relationWilliams, S. A., & Forrester, J. D. (1995). Characteristics of porphyry copper deposits. Arizona Geological Society Digest 20, 21–34.
dc.relationWilson, J. W., Kesler, S. E., Cloke, P. L., & Kelly, W. C. (1980). Fluid inclusion geochemistry of the Granisle and Bell porphyry copper deposits, British Columbia. Economic Geology, 75, 45–61.
dc.relationYielding, G. (2016). The geometry of branch lines. Geological Society of London, Special Publication 439
dc.relationYukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A. (2011). Fluid-induced swarm earthquake sequence revealed by precisely determined hypocentres and focal mechanisms in the 2009 activity at Hakone volcano, Japan. Journal of Geophysical Research, 116.
dc.relationZapata-Villada, J., Restrepo, J., Cardona-Molina, A., & Martens, U. (2017). Geoquímica y geocronología de las rocas volcánicas básicas y el Gabro de Altamira, Cordillera Occidental (Colombia): Registro de ambientes de Plateau y arco oceánico superpuestos durante el cretácico. Boletín de Geología, 39(2), 13–30.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectBuriticá
dc.subjectMiddle Cauca belt
dc.subjectColombia
dc.subjectPermeability
dc.subjectGold
dc.subjectFault control
dc.subjectCiencias de la tierra
dc.titleStructural architecture of Buriticá gold deposit, Colombia - insights from hydrothermal alteration geochemistry and implications for regional exploration
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttps://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución