dc.contributorQuiceno Colorado, July Astrid
dc.creatorMarín Kasprzyk, Albert Rafael
dc.date2023-07-12T18:24:52Z
dc.date2023-07-12T18:24:52Z
dc.date2023-07-12
dc.date.accessioned2023-09-06T18:30:54Z
dc.date.available2023-09-06T18:30:54Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/19536
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8698544
dc.descriptionIlustraciones, fotos
dc.descriptionspa:La Tonalita de Buriticá es un cuerpo intrusivo del Cretácico (100,9 ± 0,85 Ma), localizado en la Cordillera Occidental, al sur del municipio de Buriticá, Antioquia. Se encuentra intruyendo a las formaciones Barroso y San José de Urama, y está emplazado al occidente del sistema de fallas Cauca-Romeral, entre las fallas de Guasabra-Mistrató y Tonusco. Este plutón está compuesto principalmente por tonalita con anfibol de grano medio a grueso, y está intruido por diques máficos de microgabro con piroxeno, microcuarzogabro y basalto con y sin piroxenos. La Tonalita de Buriticá también se encuentra intruida por diques intermedios de diorita con piroxeno y andesita con piroxeno representativos del Complejo Intrusivo de Buriticá del Neógeno (7,41 ± 0,4 Ma). Los análisis químicos de la Tonalita de Buriticá presentan firmas geoquímicas calcoalcalinas (SiO₂ entre 70,2 y 75,7 % wt, Fe₂O₃ entre 2,74 y 4,2 % wt y Al₂O₃ entre 13,75 y 14,1 % wt), con enriquecimientos no muy marcados de los LREE sobre los HREE y una anomalía negativa de Eu. Los diques máficos (SiO₂ entre 55,5 y 63 % wt, Fe₂O₃ entre 7,1 y 9,33 % wt y Al₂O₃ entre 15,3 y 16,05 % wt) presentan firma toleítica y calcoalcalina, con patrones de REE similares a los de la tonalita pero más primitivos (patrones más planos) y sin anomalías. Los diques del Complejo Intrusivo de Buriticá (SiO₂ entre 50,4 y 50,5 % wt, Fe₂O₃ entre 8,56 y 9,8 % wt y Al₂O₃ entre 16,4 y 17,15 % wt) presentan firma calcoalcalina y enriquecimientos de los LREE sobre los HREE. Los resultados petrográficos y geoquímicos evidencian un origen para las rocas de la Tonalita de Buriticá de arco volcánico asociado a zonas de subducción, además de procesos de cristalización fraccionada y mezcla de magmas (recargas), en condiciones oxidantes. Los diques máficos muestran una fuente de magma tipo E-MORB con interacción de la corteza, permitiendo interpretar una fusión parcial de la base de la de la Provincia Litosférica Oceánica Cretácica Occidental (PLOCO) generada por una ventana astenosférica causada por un slab-rollback operativo durante el Cretácico superior, con procesos predominantes de mezcla de magmas (recargas), en condiciones reductoras. Finalmente, las muestras pertenecientes a los diques del Complejo Intrusivo de Buriticá evidencian un origen de arco volcánico asociado a zonas de subducción, además de procesos predominantemente de cristalización fraccionada, en condiciones muy oxidantes, con mezcla de magmas (recargas). La intrusión del Complejo Intrusivo de Buriticá hace aproximadamente 7 Ma es el proceso que causó la alteración hidrotermal y la acumulación de oro en las rocas de la Tonalita de Buriticá. Las rocas del Complejo Intrusivo de Buriticá se emplazaron en un fragmento de la PLOCO previamente acrecionado al continente, donde la corteza estaba más gruesa y evolucionada que la corteza en la cual de emplazó la Tonalita de Buriticá.
dc.descriptioneng:The Buriticá Tonalite is an intrusive body from the Cretaceous (100.9 ± 0.85 Ma), located in the Western Cordillera, to the south of the municipality of Buriticá, Antioquia. It is intruding the Barroso and San José de Urama formations and is located to the west of the Cauca-Romeral fault system, between the Guasabra-Mistrató and Tonusco faults. This pluton is composed mainly of medium to coarse grained amphibole tonalite, and is intruded by mafic dikes of pyroxene microgabbro, microquartzgabbro, and pyroxene basalt. The Buriticá Tonalite is also intruded by intermediate dikes of pyroxene diorite and pyroxene andesite, which are representative rocks of the Neogene Buriticá Intrusive Complex (7.41 ± 0.4). Chemical analyzes of the Buriticá Tonalite show calc-alkaline geochemical signatures (SiO₂ between 70.2 and 75.7% wt, Fe₂O₃ between 2.74 and 4.2% wt and Al₂O₃ between 13.75 and 14.1% wt). with very low marked enrichments of LREE compared to HREE and negative Eu anomaly. The mafic dikes (SiO₂ between 55.5 and 63% wt, Fe₂O₃ between 7.1 and 9.33% wt and Al₂O₃ between 15.3 and 16.05% wt) have tholeiitic and calc-alkaline signatures, with REE patterns similar to those of the tonalite but more primitive (flat patterns) and without anomalies. The Buriticá Intrusive Complex dikes (SiO₂ between 50.4 and 50.5 % wt, Fe₂O₃ between 8.56 and 9.8 % wt, and Al₂O₃ between 16.4 and 17.15 % wt) have calc-alkaline signature and enrichments of LREE over HREE. The petrographic and geochemical results show a volcanic arc origin for the Buriticá Tonalite rocks associated with subduction zones, by processes of fractional crystallization and magma mingling and mixing (recharges), in oxidized conditions. The mafic dykes show an E-MORB-type magma source with crustal interaction, suggesting a partial melting of the base of the Western Cretaceous Oceanic Lithospheric Province (PLOCO) generated by an asthenospheric window caused by an operating slab-rollback during the Upper Cretaceous, with dominant processes of magma mingling and mixing (recharges), under reduced conditions. Finally, the samples belonging to the Buriticá Intrusive Complex dikes show a volcanic arc origin associated with subduction zones, with dominant fractional crystallization processes, in highly oxidized conditions, with a mingling and mixing (recharges). The intrusion of the Buriticá Intrusive Complex about 7 Ma ago is the process that causes the hydrothermal alteration and accumulation of gold in the Buriticá Tonalite rocks. The Buriticá Intrusive Complex rocks were emplaced in a PLOCO fragment previously accreted to the continent, where the crust was thicker and evolved than the crust in which the Buriticá Tonalite was emplaced.
dc.description1. Introducción / 2. Objetivos / 2.1. Objetivo general / 2.2. Objetivos específicos / 3. Marco geológico / 4. Marco teórico / 4.1. Mecanismos generadores de magmas / 4.1.1. Presión (P) / 4.1.2. Temperatura (T) / 4.1.3. Fluidos químicamente activos (X) / 4.2. Generación de magmas en zonas de subducción / 4.3. Mecanismos que permiten el ascenso y emplazamiento de magmas / 4.3.1. Diapirismo / 4.3.2. Propagación por fracturas / 4.4. Geometría de los cuerpos ígneos / 4.1. Diques y Silos. / 4.4.2 Plutones / 4.5. Evolución y cristalización de los magmas / 4.5.1. Tipos de cristalización / 4.5.2. Mezcla de magmas / 4.5.3. Contaminación cortical / 4.6. Principales características químicas de los magmas en Zonas de Subducción / 4.6.1. Corteza Oceánica - Corteza Oceánica / 4.6.2. Corteza Oceánica - Corteza Continental /4.7. Litogeoquímica. / 5. Metodología / 5.1. Fase preliminar: / 5.2. Fase de campo / 5.3. Análisis petrográfico / 5.4. Geoquímica/Litogeoquímica: / 6. Resultados / 6.1. Descripción litológica a partir de fotos de núcleos de perforación / 6.2. Fase de campo / 6.2.1. Muestras de mano: / 6.3. Análisis microscópico / Tonalita de Buriticá: / Diques / Complejo Intrusivo Buriticá (CIB) / 6.3. Litogeoquímica: / 7. Discusión y análisis de resultados / Origen y características del magma / Tonalita de Buriticá / Diques máficos / Complejo Intrusivo Buriticá (CIB) / Alteración hidrotermal / Modelo de emplazamiento y evolución de los cuerpos en un contexto tectónico / 8. Conclusiones / 9. Lista de referencias / 10. Apéndices
dc.descriptionUniversitario
dc.descriptionGeólogo(a)
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherGeología
dc.relationÁlvarez, E., & González, H. (1978). Geología y Geoquímica de la Plancha I-7, Urrao. Mapa escala 1:100.000. En Inedito.
dc.relationAlvarez, J. (1971). Informe preliminar sobre geoquímica de la Cordillera Occidental. Inédito.
dc.relationAméglio, L., Vigneresse, J. L., & Bouchez, J. L. (1997). Granite Pluton Geometry and Emplacement Mode Inferred from Combined Fabric and Gravity Data. En Granite: Segregation of Melt to Emplacement Fabrics (Número 5563, pp. 119–214). https://doi.org/10.1007/978-94-017-1717-5_13
dc.relationLi, Z. X., & Lee, C. T. (2004). The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters, 228(3–4), 483– 493. https://doi.org/10.1016/j.epsl.2004.10.006
dc.relationAsimow, P. D. (2000). Melting the Mantle. En H. Sigurdsson (Ed.), Encyclopedia of Volcanoes (pp. 55–68).
dc.relationBest, M. G. (2003). Igneous and Metamorphic Petrology Second Edition (Second Edition). Blackwell Publishing.
dc.relationBowen, Norman. L. (1929). The Evolution of the Igneous Rocks. Nature, 124(3126), 474–475. https://doi.org/10.1038/124474a0
dc.relationBritish Geological Survey. (1999). Rock Classification Scheme – Vol 1 – Igneous.
dc.relationBrowne, P. R. L. (1978). Hydrothermal Alteration in Active Geothermal Fields. Ann. Rev. Earth Planet. Sci, 6, 229–250. www.annualreviews.org
dc.relationCardona, A., Valencia, V., Bayona, G., Jaramillo, C., Ojeda, G., & Ruiz, J. (2009). U/Pb LA-MC-ICP-MS zircon geochronology and geochemistry from a postcollisional biotite granite of the baja guajira basin, Colombia: Implications for late cretaceous and neogene caribbean-south American tectonics. Journal of Geology, 117(6), 685– 689. https://doi.org/10.1086/605776
dc.relationCardona, Agustín., León, Santiago., Jaramillo, Juan., Valencia, Victor., Zapata, Sebastián., Pardo-Trujillo, Andrés., Schmitt, Axel., Mejía, Dany., & Arenas, J. Camilo. (2020). Cretaceous Record from a Mariana– to an Andean–Type Margin in the Central Cordillera of the Colombian Andes. En The Geology of Colombia (Vol. 2, pp. 335–373). https://doi.org/10.32685/pub.esp.36.2019.10
dc.relationCase, J. E. , Durán, L. G., López, A., & Moore, W. R. (1971). Tectonic investigations in western Colombia and eastern Panama. Geological Society of America Bulletin, 82(10), 2685–2712. https://doi.org/10.1130/0016- 7606(1971)82[2685:tiiwca]2.0.co;2
dc.relationCastro, N., & Feininger, T. (1965). Geología de la región entre Buriticá y Santa Fe de Antioquia, con especial referencia a la geología económica de un cuerpo andesítico.
dc.relationCastro-Dorado, A. (2015). Petrografía de Rocas Ígneas y Metamórficas.
dc.relationClass, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6). https://doi.org/10.1029/1999GC000010
dc.relationClemens, J. D., & Mawer B, C. K. (1992). Granitic magma transport by fracture propagation. Tectonophysics, 204(3–4), 339–360. https://doi.org/10.1016/0040- 1951(92)90316-x
dc.relationCorbett, G., & Leach, T. (1997). Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization.
dc.relationCorrea, T., Obando, G., Zapata, J., Rincón, A., Ortiz, F., Rodriguez, G., & Cetina, L. (2018). GEOLOGÍA DEL BORDE OCCIDENTAL DE LA PLANCHA 130 SANTA FE DE ANTIOQUIA, Memoria Explicativa, Escala 1:50000. www.sgc.gov.co
dc.relationCorry, C. E. (1988). Laccoliths; Mechanics of emplacement and growth. Geological Society of America, 1–114. https://doi.org/10.1130/spe220-p1
dc.relationCross, T. A., & Pilger, R. H. (1982). Controls of subduction geometry location of magmatic arcs and tectonics of arc and back-arc regions. Geological Society of America Bulletin, 93(6), 545–562. https://doi.org/10.1130/0016- 7606(1982)93<545:COSGLO>2.0.CO;2
dc.relationCruden, A. R. (1988). Deformation around a rising diapir modeled by creeping flow past a sphere. Tectonics, 7(5), 1091–1101. https://doi.org/10.1029/tc007i005p01091
dc.relationCruden, A. R. (1998). On the emplacement of tabular granites. Journal of the Geological Society, 155(5), 853–862.
dc.relationCruden, A. R. (2006). Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. En Brown & Rushmer. T (Eds.), Evolution and Differentiation of the Continental Crust (pp. 455–519). Cambridge University Press
dc.relationCruden, A. R., McCaffrey, K. J. W., & Bunger, A. P. (2018). Geometric Scaling of Tabular Igneous Intrusions: Implications for Emplacement and Growth. En Advances in Volcanology (pp. 11–38). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/11157_2017_1000
dc.relationDaines, M. J. (2000). Migration of Melt. En H. Sigurdsson (Ed.), Encyclopedia of Volcanoes (pp. 69–88). Academic Press. https://doi.org/10.1016/C2015-0-00175-7
dc.relationDefant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665.
dc.relationElders, W. A., Hoagland, J. R., & Mcdowell, S. D. (1979). Hydrothermal Mineral Zones in the Geothermal Reservoir of Cerro Prieto. Geothermics, 8, 201–209.
dc.relationElkins Tanton, L. T., Grove, T. L., & Donnelly-Nolan, J. (2001). Hot, shallow mantle melting under the Cascades volcanic arc. Geology, 29(7), 631–634. https://doi.org/10.1130/0091-7613(2001)029<0631:HSMMUT>2.0.CO;2
dc.relationErnst, R. E., Head, J. W., Parfitt, E., Grosfils, E., & Wilson, L. (1995). Giant radiating dyke swarms on Earth and Venus. Earth Science Reviews, 39(1–2), 1–58. https://doi.org/10.1016/0012-8252(95)00017-5
dc.relationEtayo, F., González, H., & Alvarez, J. (1980). Med Albian ammonites from nothern Western Cordillera, Colombia. Geología Norandina, 2, 25–30.
dc.relationGeoestudios. (2005). Complementación Geológica, Geoquímica y Geofísica de la parte occidental de las planchas 130 Santa Fe de Antioquia y 146 Medellín Occidental.
dc.relationGöbel, V., & Stibane, F. (1979). K/Ar hornblende ages of tonalite plutons, Cordillera Occidental, Colombia. En Publ. Esp. Geol. (Vol. 19).
dc.relationGómez Tapias, J., Montes Ramírez, N. E., Almanza Meléndez, M. F., Alcárcel Gutiérrez, F. A., Madrid Montoya, C. A., & Diederix, H. (2017). Geological Map of Colombia 2015. Episodes, 40(3), 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023
dc.relationGonzález, H. (2001). Memoria Explicativa del Mapa Geológico del departamento de Antioquia, Escala 1:400.000. INGEOMINAS, 125. http://190.109.167.188:83/imagenes/SIAD/LI_GEO_EST_MAP_MAPA_GEOLOG ICO_DE_ANTIOQUIA_400MIL_SEMA.PDF
dc.relationGonzález, H., & Londoño, A. (1998). Edades K/Ar en algunos cuerpos plutonicos del graben Cauca-Patia y norte de la Cordillera Occidental. Geología Colombiana, 23(0), 117–131.
dc.relationGonzález, H., & Londoño, A. C. (2002b). Eoceno. Andesita de Buriticá (Eab) Cordillera Ocidental Departamento de Antioquia. Catálogo de las unidades litoestratigráficas de Colombia. www.ingeominas.gov.co
dc.relationGonzález, H., Restrepo, J., Toussaint, J., & E., Linares. (1978). Edad radiométrica K/Ar del Batolito de Sabanalarga. En Publ. Esp. Geol. (Vol. 8).
dc.relationGonzález I., H., & Londoño G., A. C. (2002a). Cretácico Superior. Tonalita de Buriticá (Stock de Buriticá) (K2tb) Cordillera Occidental Departamento de Antioquia. Catálogo de las Unidades Litoestratigráficas de Colombia., 1–25.
dc.relationGonzález, P. D. (2015). Texturas de los cuerpos ígneos. En Geología de los cuerpos ígneos (pp. 167–195). Asociación Geológica Argentina. http://www.rae.es/
dc.relationGovers, R., & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1–2), 505–523. https://doi.org/10.1016/j.epsl.2005.03.022
dc.relationGreen, T. H., & Pearson, N. J. (1986). Ti-Rich Accesory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P,T. En Chemical Geology (Vol. 54).
dc.relationGretener, P. E. (1969). On the mechanics of the intrusion of sills. Canadian Journal of Earth Sciences, 6(6), 1415–1419. https://doi.org/10.1139/e69-143
dc.relationGrosse, E. (1926). Estudio geológico del terciario carbonífero de Antioquia en la parte Occidental de la Cordillera Central de Colombia entre el río Arma y Sacaojal. .
dc.relationGrove, T. L. (2000). Origin of Magma. En H. Sigurdsonn (Ed.), Encyclopedia of Volcanoes (pp. 133–147). Academic Press. https://doi.org/10.1016/C2015-0-00175- 7
dc.relationHalley, S. (2020). Mapping magmatic and hydrothermal processes from routine exploration geochemical analyses. Economic Geology, 115(3), 489–503. https://doi.org/10.5382/ECONGEO.4722
dc.relationHolliday, J. R., & Cooke, D. R. [. (2007). Advances in Geological Models and Exploration Methods for Copper ± Gold Porphyry Deposits. Richards.
dc.relationIrvine, T. N., & Baragar, W. R. A. (1971). A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. https://doi.org/10.1139/e71-055
dc.relationIrving, E. (1971). La evolución estructural de Los Andes más septentrionales de Colombia. Boletín Geológico, 19(2), 1–90.
dc.relationIveson, A. A., Rowe, M. C., Webster, J. D., & Neill, O. K. (2018). Amphibole-, clinopyroxene-, and plagioclase-melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. https://doi.org/10.1093/petrology/egy072/5055044
dc.relationJeanloz, R. (2000). Mantle of the Earth. En H. Sigurdsonn (Ed.), Encyclopedia of Volcanoes (pp. 41–54). Academic Press.
dc.relationJones, I., Blaylock, G., Caldwell, J., Corso, W., Creek, M., Levy, M., McLeod, K., Stone, D., & Tahijia, L. (2019). Report NI 43-101. Buriticá Mineral Resource 2019-01. www.continetalgold.com
dc.relationKincaid, C., & Sacks, I. S. (1997). Thermal and dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research: Solid Earth, 102(6), 12295– 12315. https://doi.org/10.1029/96jb03553
dc.relationLargo, S. H. (2018). Memorandum: Magnetic susceptibility GBUS008D. www.continentalgold.com.
dc.relationLe Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sørensen, H., & Woolley, A. R. (2002). Igneous Rocks: A Classification and Glossary of Terms. https://www.researchgate.net/publication/234448684
dc.relationLesage (2011). (s/f).
dc.relationLesage, G. (2011). Geochronology, Petrography, Geochemical Constraints, and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia. [University of Alberta]. https://doi.org/10.7939/R35M0M
dc.relationLoucks, R. R. (2014). Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1), 5–16. https://doi.org/10.1080/08120099.2013.865676
dc.relationLowell, D., & Guilbert, J. (1970). Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65, 373–408.
dc.relationMartin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. En Lithos (Vol. 46).
dc.relationMccaffrey, K. J. W., & Petford, N. (1997). Are granitic intrusions scale invariant? Journal of the Geological Society, 154(1), 1–4. https://doi.org/10.1144/gsjgs.154.1.0001
dc.relationMejía, M. (1984). Geología y geoquímica de las planchas 130 (Santa Fé de Antioquia) 146 (Medellín Occidental) (Vol. 130).
dc.relationMejía, M., & Salazar, G. (1989). Memoria explicativa de la Geología de la Plancha 114 (Dabeiba) y parte W de la 115 (Toledo). Escala 1:100.000.
dc.relationMicrosoft. (2015). Image Composite Editor (Versión 2.0.3 (64bits)) [Software].
dc.relationMiddlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012- 8252(94)90029-9
dc.relationNakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757–775. https://doi.org/10.1016/0016-7037(74)90149-5
dc.relationNivia, A. (2001). Mapa geológico del departamento de Valle del Cauca, Escala 1:250.000, Memoria explicativa.
dc.relationNivia, Á., & Gómez, J. (2005). El Gabro de Santa Fe de Antioquia y la Cuarzodiorita de Sabanalarga, una propuesta de nomenclatura litoestratigráfica para dos cuerpos plutónicos diferentes agrupados previamente como Batolito de Sabanalarga en el departamento de Antioquia, Colombia. X Congreso Colombiano de Geología, February 2016, 1–11. https://doi.org/10.13140/RG.2.1.4322.0240
dc.relationNorman, D. K., Parry, W. T., & Bowman, J. R. (1991). Petrology and Geochemistry of Propylitic Alteration at Southwest Tintic, Utah. En Economic Geology (Vol. 86).
dc.relationPardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., SalazarRíos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401. https://doi.org/10.1016/j.sedgeo.2020.105627
dc.relationPearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. En R. S. Thorpe (Ed.), Andesites: Orogenic Andesites and Related Rocks (pp. 525–548). John Wiley and Sons.
dc.relationPearce, J. A. (1983). The role of subcontinental lithosphere in magma genesis at destructive plate margins. En C. J. Hawkeswrth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Birkhauser.
dc.relationPearce, J. A. (1996). A user´s guide to Basalt Discrimination Diagrams. En D. A. Wyman (Ed.), Trace Element Geochemistry of Volcanic Rocks: Aplications for Massive Sulphide Exploration (Vol. 12, pp. 79–113).
dc.relationPearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
dc.relationPetford, N. (2003). Rheology of granitic magmas during ascent and emplacement. Annual Review of Earth and Planetary Sciences, 31(August), 399–427. https://doi.org/10.1146/annurev.earth.31.100901.141352
dc.relationPirajno, F. (2009). Hydrothermal Processes and Mineral Systems. Geological Survey of Western Australia.
dc.relationPlank, T., & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. En Earth and Planetary Science Letters (Vol. 90).
dc.relationProject, B. V. S. (1981). Basaltic volcanism on the terrestial planets. Pergamon Press.
dc.relationRamos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Memoir of the Geological Society of America, 204, 31–65. https://doi.org/10.1130/2009.1204(02)
dc.relationRasband, W. (1997). ImageJ (Version 1.53) [Software].
dc.relationREFLEX. (2018). ioGAS (Versión 7.0) [Software]. https://reflexnow.com/product/iogas/
dc.relationRestrepo, J. J., & Toussaint, J. F. (1988). Terranes and Continental Accretion in the Colombian Andes. Episodes, 11(3), 189–193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
dc.relationReyes, A. G. (1990). Mineralogy, distribution and origin of acid alteration in Philippine geothermal systems, in Third symposium on deep-crust fluids. Geological Survey of Japan, 51–58.
dc.relationRodríguez, G., Arango, M. I., & Bermúdez, J. G. (2012). Batolito De Sabanalarga, Plutonismo De Arco En La Zona De Sutura Entre Las Cortezas Oceánica Y Continental De Los Andes Del Norte. Boletín de Ciencias de la Tierra, 0(32), 81– 98.
dc.relationRodríguez García, G., & Arango Mejía, M. I. (2013). Formación Barroso: Arco volcánico toleitico y Diabasas de San José de Urama: Un prisma acrecionario T-Morb en el segmento norte de la Cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 0(33), 17–38.
dc.relationRollinson, H., & Pease, V. (2021). Using Geochemical Data to Understand Geological Processes (Segunda edición).
dc.relationSánchez, M. M., & Pardo-Trujillo, A. (2003). Stratigraphical and sedimentological constraints on western Colombia: Implications on the evolution of the Caribbean plate
dc.relationSaunders, A. D., & Tarney, J. (1984). Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society Special Publication, 16, 59–76. https://doi.org/10.1144/GSL.SP.1984.016.01.05
dc.relationSchmidt, M. W., Dardon, A., Chazot, G., & Vannucci, R. (2004). The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226(3–4), 415–432. https://doi.org/10.1016/j.epsl.2004.08.010
dc.relationSchmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1–4), 361–379. https://doi.org/10.1016/S0012-821X(98)00142-3
dc.relationSchofield, N., Stevenson, C., Mark, N., & Holford, S. (2021). Igneous Intrusions: Sills, Dykes and Plutons. En Encyclopedia of Geology (pp. 313–329). Elsevier. https://doi.org/10.1016/b978-0-08-102908-4.00112-0
dc.relationSharma, K., Blake, S., Self, S., & Krueger, A. J. (2004). SO2 emissions from basaltic eruptions, and the excess sulfur issue. Geophysical Research Letters, 31(13). https://doi.org/10.1029/2004GL019688
dc.relationShervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. En Earth and Planetary Science Letters (Vol. 59).
dc.relationSpera, F. J. (2000). Physical properties of magmas. En H. Sigurdsonn (Ed.), Encyclopedia of Volcanoes (pp. 171–190). Academic Press. https://doi.org/10.1016/C2015-0-00175-7
dc.relationStern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108
dc.relationStern, R. J. (2015). Magmatism at convergent plate boundariess. En Encyclopedia of Earth Sciences Series: Vol. Part 2 (pp. 399–407). Springer Netherlands. https://doi.org/10.1007/978-94-007-6644-0_24-1
dc.relationTarney, J., & Jones, C. E. (1994). Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal - Geological Society (London), 151(5), 855–868. https://doi.org/10.1144/gsjgs.151.5.0855
dc.relationTaylor, S. R. (1964). Trace element abundances and the chondritic Earth model.
dc.relationToplis, M. J., & Corgne, A. (2002). An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144(1), 22–37. https://doi.org/10.1007/s00410-002-0382-5
dc.relationToussaint, J. F., & Restrepo, J. J. (1976). Modelos orogénicos de tectónica de placas en los Andes Colombianos. Boletín Ciencias de la Tierra, 1, 1–47.
dc.relationToussaint, J. F., & Restrepo, J. J. (1989). Acreciones sucesivas en Colombia: Un nuevo modelo de evolución geológica. V Congreso Colombiano de Geología, Memoirs, I, 127–146.
dc.relationToussaint, J. F., & Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia: An Update Second Part: Oceanic Terranes. En J. Gómez & A. O. Pinilla–Pachon (Eds.), The Geology of Colombia (Vol. 2, Número 7, pp. 237–260). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.07
dc.relationVigneresse, J. L., & Clemens, J. D. (2000). Granitic magma ascent and emplacement: Neither diapirism nor neutral buoyancy. Geological Society, 174, 1–19. https://doi.org/10.1144/GSL.SP.1999.174.01.01
dc.relationVigneresse, J. L., Tikoff, B., & Améglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics, 302(3–4), 203–224. https://doi.org/10.1016/S0040-1951(98)00285-6
dc.relationWarnock, J. (1987). Adobe Illustrator (Versión 2020 (24.3)) [Software]. https://doi.org/https://www.adobe.com/co/products/illustrator.html?sdid=KQPQL& mv=search&ef_id=CjwKCAiA5Y6eBhAbEiwA_2ZWISEO5eQTXzK1pneMT3- HK86JLt_8QVnu6roHBKi1K2RItSYm8uV1RoCYu0QAvD_BwE:G:s&s_kwcid=AL!3085!3!44230321260 0!e!!g!!adobe%20illustrator!9499870682!97813413798&gclid=CjwKCAiA5Y6eBh AbEiwA_2ZWISEO5eQTXzK1pneMT3-HK86JLt_8QVnu6roHBKi1K2RItSYm8uV1RoCYu0QAvD_BwE
dc.relationWebb, S. L., & Dingwell, D. B. (1990a). Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt, and nephelinite. Journal of Geophysical Research, 95(B10). https://doi.org/10.1029/jb095ib10p15695
dc.relationWebb, S. L., & Dingwell, D. B. (1990b). The onset of non-Newtonian rheology of silicate melts - A fiber elongation study. Physics and Chemistry of Minerals, 17(2), 125–132. https://doi.org/10.1007/BF00199663
dc.relationWeber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002
dc.relationWeber, M., Gómez-Tapias, J., Duarte, E., Cardona, A., & Vinasco-Vallejo, C. J. (2011). Geochemistry of the Santa Fe Batholith in NW Colombia: Remnant of an accreted Cretaceous arc. Memorias XIV Congreso Latinoanericano de Geología, 128–129.
dc.relationWeinberg, R. F. (2006). Melt segregation structures in granitic plutons. Geology, 34(4), 305–308. https://doi.org/10.1130/G22406.1
dc.relationWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371
dc.relationWilliams-Jones, A. E., & Vasyukova, O. v. (2018). The economic geology of scandium, the runt of the rare earth element litter. Economic Geology, 113(4), 973–988. https://doi.org/10.5382/econgeo.2018.4579
dc.relationWilson, M. (2007). Igneous Petrogenesis: a Global Tectonic Approach. Springer. https://doi.org/10.1180/minmag.1989.053.372.15
dc.relationWinter, J. D. (2014). Principles of Igneous and Metamorphic Petrology (Second Edi). Pearson Education Limited.
dc.relationWood, D. A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. En Earth and Planetary Science Letters (Vol. 50).
dc.relationWright, J. E., & Wyld, S. J. (2011). Late cretaceous subduction initiation on the eastern margin of the caribbean-colombian oceanic plateau: One great arc of the caribbean(?). Geosphere, 7(2), 468–493. https://doi.org/10.1130/GES00577.1
dc.relationYang, H., Ge, W. C., Zhao, G. C., Dong, Y., Xu, W. L., Ji, Z., & Yu, J. J. (2015). Late triassic intrusive complex in the Jidong region, Jiamusi-Khanka Block, NE China: Geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma mingling and mixing. Lithos, 224–225, 143–159. https://doi.org/10.1016/j.lithos.2015.03.001
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectCiencias de la tierra
dc.titleCaracterización petrográfica y litogeoquímica del Stock de Buriticá (Tonalita de Buriticá) e intrusivos asociados
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttps://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución