dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorOliveira, Diego F. M.
dc.creatorLeonel, Edson Denis
dc.date2013-09-30T20:01:27Z
dc.date2014-05-20T14:16:08Z
dc.date2016-10-25T17:39:18Z
dc.date2013-09-30T20:01:27Z
dc.date2014-05-20T14:16:08Z
dc.date2016-10-25T17:39:18Z
dc.date2008-03-01
dc.date.accessioned2017-04-05T22:20:44Z
dc.date.available2017-04-05T22:20:44Z
dc.identifierBrazilian Journal of Physics. Sociedade Brasileira de Física, v. 38, n. 1, p. 62-64, 2008.
dc.identifier0103-9733
dc.identifierhttp://hdl.handle.net/11449/24857
dc.identifierhttp://acervodigital.unesp.br/handle/11449/24857
dc.identifier10.1590/S0103-97332008000100012
dc.identifierS0103-97332008000100012
dc.identifierWOS:000254521800012
dc.identifierS0103-97332008000100012.pdf
dc.identifierhttp://dx.doi.org/10.1590/S0103-97332008000100012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/869817
dc.descriptionWe have studied a dissipative version of a one-dimensional Fermi accelerator model. The dynamics of the model is described in terms of a two-dimensional, nonlinear area-contracting map. The dissipation is introduced via inelastic collisions of the particle with the walls and we consider the dynamics in the regime of high dissipation. For such a regime, the model exhibits a route to chaos known as period doubling and we obtain a constant along the bifurcations so called the Feigenbaum's number delta.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherSociedade Brasileira de Física
dc.relationBrazilian Journal of Physics
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBouncing Ball Model
dc.subjectDissipation
dc.subjectLyapunov Exponent
dc.subjectFeigenbaum number
dc.titleThe Feigenbaum's delta for a high dissipative bouncing ball model
dc.typeOtro


Este ítem pertenece a la siguiente institución